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ABSTRACT

This paper introduces Discriminant Pairwise Local Embed-

dings (DPLE) a supervised dimensionality reduction tech-

nique that generates structure preserving discriminant sub-

spaces. This objective is achieved through a convex opti-

mization formulation where Euclidean distances between data

pairs that belong to the same class are minimized, while those

of pairs belonging to different classes are maximized. These

pairwise relations are encoded in two matrices and weighted

with the data affinity matrix to ensure local structure preserva-

tion. The discriminant efficiency of our technique is demon-

strated in two popular applications, face and sketch recogni-

tion, where DPLE outperforms competitive manifold learn-

ing algorithms. A kernelized version of DPLE, that further

enhances recognition accuracy, is also explained.

Index Terms— Dimensionality reduction, DPLE, mani-

fold learning, sketch recognition, face recognition

1. INTRODUCTION

Dimensionality reduction or subspace learning is the transfor-

mation that maps data from a high-dimensional space into a

meaningful low dimensional space. It has been widely used in

recognition tasks to mitigate the inherent drawbacks of high-

dimensional spaces. Real world data like images, videos and

speech signals are by nature high-dimensional modalities. In

order to efficiently process that data, we need to reduce its di-

mensionality. Furthermore, such real world data are accom-

panied by noise which affects the accuracy of classification al-

gorithms. By exposing the intrinsic dimensionality of the in-

put data, we can generate projection bases that are immune to

noise. The benefits of dimensionality reduction include clas-

sification, visualization and compression of high-dimensional

data [1].

One of the first and classic approaches to dimensional-

ity reduction is the PCA algorithm that generates a subspace

where data variance is maximized. PCA is an unsupervised

technique, therefore does not produce discriminative sub-

spaces. LDA [2] exploits the data labels and performs better

in classification scenarios. PCA and LDA rely on assump-

tions on the data distributions which often do not hold for real

world applications. LFDA [3] takes local structure of the data

into account so multi-modal data can be embedded appropri-

ately.

Manifold learning is the branch of dimensionality reduc-

tion that investigates the underlying manifold of data. Orig-

inated from ISOMAP [4], manifold learning techniques at-

tempt to discover a low-dimensional manifold where the input

data lie on. A famous example is the Swiss roll which is orig-

inally embedded in a three dimensional space, yet it easy to

show by ’unfolding’ it, that its points lie on a two dimensional

manifold.

In the same spirit, LPP [5] and its variants [6, 7, 8, 9, 10]

generate lower dimensional spaces that preserve the local

neighborhood of the data, hence the restricting assumptions

of PCA and LDA are avoided. LPP is an unsupervised tech-

nique, yet extensions have been published that make use of

data labels. DLPP [9] incorporates in the optimization pro-

cess the within and between scatter matrices to achieve class

separability. ILPP [6], ARE [8] and max-margin MMP[10]

are semi-supervised approaches obtaining label information

from user feedback. ILPP updates its learned projection ma-

trix according to user guidelines. MMP solves an eigenvalue

problem that maximizes the margin between different labelled

samples.

We present Discriminant Pairwise Local Embeddings

(DPLE), a manifold learning algorithm inspired by LPP [5].

The main idea is to learn a discriminant subspace where the

data will be better separated than in the original input space,

without violating much its local neighbourhood. The latter

ensures that the data will maintain their manifold structure in

the learned subspace, so classification algorithms can gener-

alize better. We form these goals in a convex optimization

problem that can be efficiently solved through eigendecom-

position. A kernelized version is also introduced to further

enhance classification accuracy. Experiments on two datasets

demonstrate the advantages of our technique.

DPLE’s objective is similar to that of LDE[7]/ARE, yet

our formulation is different and the superiority of our tech-

nique is attributed to the following factors: a) LDE does not

exploit the importance of influential samples, i.e. samples

with many proximate neighbours guaranteed not to be out-

liers. DPLE utilizes this information in its objective function.

b) ARE employs a non-flexible encoding scheme for the re-

lationships between data pairs. It weights equally every pair



and does not take into account the distances of samples in the

original space. This approach fails to alleviate the influence

of noisy data pairs that belong to the same class but they are

far away in the feature space. DPLE handles this problem by

weighting these relationships with the affinity matrix.

2. DISCRIMINANT PAIRWISE LOCAL EMBEDDING

This section describes Discriminant Pairwise Local Embed-

dings (DPLE), a novel supervised dimensionality reduction

technique and its kernelized variant via the kernel trick [11].

2.1. Linear DPLE

Let n pairs of data samples and its associated labels

(xi, yi), i = {1, 2, . . . , n}, where xi ∈ R
d represents a data

sample and yi ∈ {1, 2, . . . , |C|} is the label of the i-th sam-

ple. |C| is the total number of classes. Let X ∈ R
d×n be

the matrix of all samples. The i-th column of X is xi. Let

zi ∈ R
p(1 ≤ p ≤ d) be an embedded sample and p the

dimension of the embedding space. Since we investigate di-

mensionality reduction scenarios, we usually require p ≪ d.

Linear dimensionality reduction is performed via the

transformation matrix W ∈ R
d×p:

zi = W
⊤
xi (1)

The structure information of the data set is represented

in the affinity matrix A. The matrix A captures similarities

between data pairs and is defined as:

Ai,j =











e−‖xi−xj‖
2/2σ2

, ifxi ∈ Nk(xj)

orxj ∈ Nk(xi)

0, otherwise

(2)

where Nk(x) represents the set of k-nearest neighbours of x.

A simpler alternative to (2) is to set Ai,j = 1 if xi is a nearest

neighbor of xj or vice versa; otherwise Ai,j = 0. In both

cases, a high value of Ai,j indicates that xi and xj lie close

in the defined metric space and a low value that they lie apart.

Based on the label information, we define two pairwise re-

lation matrices. The same-label matrix A
(s) representing all

the sample pairs that share the same label and the different-

label matrix A
(d) representing all the sample pairs with dif-

ferent labels:

A
(s)
i,j =

{

Ai,j , if yi = yj

0, otherwise
(3)

A
(d)
i,j =

{

Ai,j , if yi 6= yj

0, otherwise
(4)

We observe from (3) and (4) that matrices A(s) and A
(d) are

weighted with the affinity matrix A. If we assign a constant

value to similar and dissimilar pairs as in [8]; for instance if

A
(s)
i,j = 1 when yi = yj and A

(d)
i,j = 1 when yi 6= yj , then

all the sample pairs will have equal weights resulting in loss

of structure information. Instead, by employing the affinity

matrix we assign an ’importance’ value to each pair. Samples

that lie close in the original input space are more significant

and are imposed to lie close in the embedding space. On the

other hand, pairs that are apart in the original space are either

ignored or slightly contribute to the optimal solution. This

idea is similar to the local variant of LDA [3], yet employed

in a different learning framework.

We suggest the following optimization problem:

argmax
W

1

2

n
∑

i,j

‖W⊤
xi −W

⊤
xj‖

2
(

A
(d)
i,j − γA

(s)
i,j

)

subject to:W⊤
XDX

⊤
W = I

(5)

where Di,i =
∑n

j=1 Ai,j is a diagonal matrix consisted of

the row sums of A and γ is a scalar to compensate for any

imbalances occurred by different number of pair samples be-

tween A
(d) and A

(s).

The above formulation minimizes the Euclidean distances

between all sample pairs that belong to the same cate-

gory through matrix A
(s) and in the same time maximizes

those between pairs belonging to different classes through

matrix A
(d). We have previously seen that each pair re-

lationship is weighted by the affinity matrix A, therefore

the intrinsic structure of data is maintained. The constrain

W
⊤
XDX

⊤
W = I is imposed to avoid the trivial solution

W = 0 and each entry Di,i provides a measure of importance

to the embedded sample zi = W
⊤
xi.

The objective function in (5) can be rewritten as follows

using linear algebra properties:

argmax
W

J(W) = W
⊤
X

(

L
(d) − γL(s)

)

X
⊤
W

subject to:W⊤
XDX

⊤
W = I

(6)

where L
(s) = D

(s) −A
(s) and L

(d) = D
(d) −A

(d) are the

Laplacian matrices of A(s) and A
(d) respectively.

We apply the Lagrange multipliers to the above problem

and the set the derivative with respect to W to zero.

X

[

L
(d) − L

(s)
]

X
⊤
w = λ̄XDX

⊤
w (7)

The result is a generalized eigenvalue problem and since

L
(s), L(d) and D are symmetric semi-definite matrices all the

eigenvalues are real positive numbers.

The optimal projection matrix WDPLE is given by:

WDPLE =

(

√

λ̄1w1 |
√

λ̄2w2 | · · · |
√

λ̄pwp

)

(8)

where {w}pi=1 are the generalized eigenvectors associated

with the p largest eigenvalues λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄p of (7).



Algorithm 1: DPLE embedding

Data: (xi, yi) i ∈ {1, 2, . . . , n} , γ, p
Result: Projection matrix: WDPLE

1 Compute affinity matrix A according to (2).

2 Compute matrices A(s) and A
(d) from (3) and (4).

3 Solve the generalized eigenproblem of (7).

4 Form the columns of WDPLE from the eigenvectors of

(7) corresponding to the largest eigenvalues.

The steps of DPLE are summarized in Algorithm 1.

DPLE exploits the labelled information encoded through the

matrices A
(s) and A

(d) to generate discriminate projection

bases without violating the intrinsic structure of the data. The

latter is ensured by the leverage of the affinity matrix A which

weights accordingly each sample pair. The embedded data lie

on a discriminative semantic manifold which preserves local

geometric relations. As a result classes become better sepa-

rated in the learned subspace.

2.2. Kernel DPLE

In most real world applications, data in the original input

space cannot be linearly separated, due to it is being gener-

ated from non-linear processes. In such cases, linear algo-

rithms like DPLE fail to produce efficient embedding spaces.

We show that by using the kernel trick [11], we can generate

a non-linear map from the original high-dimensional feature

space to a lower-dimensional manifold where non-linear data

can be efficiently represented.

Let φ : Rd → H be a non-linear map function, mapping

the Euclidean space R
d to Hilbert space H. In Hilbert space

the eigenvector problem of (7) becomes:

φ (X)
[

L
(d) − L

(s)
]

φ (X)
⊤
w = λ̄φ (X)Dφ (X)

⊤
w (9)

There is no easy way to directly compute the mapping φ (X),
yet we can employ inner products of mapped data to solve the

problem. We define the inner products of the mapped data as:

K (xi,xj) = φ (xi)
⊤
φ (xj) (10)

The eigenvectors of (9) are linear combinations of

φ (x1) , φ (x2) , . . . , φ (xn), hence we can write:

w =

n
∑

i=1

αiφ (xi) = φ (X)α (11)

where α = [α1, α1, . . . , αn]
⊤ ∈ R

n. Using (11) it is easy to

obtain the kernelized eigenvalue problem:

K

[

L
(d) − L

(s)
]

Kα = λ̄KDKα (12)

As before, the optimal embedding is consisted from the p

eigenvectors corresponding to largest eigenvalues of (12).

3. EXPERIMENTS AND RESULTS

In this section, the classification efficiency of DPLE is

demonstrated. Our method is applied to two popular learning

tasks, face recognition and sketch recognition, and compared

against various well-known discriminant subspace learning

algorithms.

3.1. Datasets and experimental setup

The two datasets used in our evaluation are the ORL face

database [12] and the sketch recognition database (SKETCH)

of [13]. The ORL dataset includes 40 subjects with 10

grayscale images per subject. Following the preprocessing

of [7], we resize each image to 28 × 23 pixels and vectorize

the outcome. We apply PCA to the image vectors and keep

98% of the information.

The SKETCH dataset of [13] encompasses 20,000 unique

human drawn sketches evenly distributed over 250 object cat-

egories. Each image depicts a binary sketch of a single ob-

ject. All sketches are rescaled to a fixed size and centred in

the image canvas to accommodate scale and translation in-

variance. The human accuracy on the above database is 73%

which highlights the challenge for machine classification. We

observe high inter-class and intra-class variability. Some

classes are easily recognized while others regularly misclas-

sified to categories with similar visual appearance. Moreover,

an object can be sketched quite differently by various indi-

viduals a fact that contributes to aforementioned intra-class

variations. Each sketch is represented by an ensemble of lo-

cal features that capture the main gradient orientations of a

local sketch region. The data are publicly available from the

authors’ website and in this paper we use them as provided

with no alternations.

We compare our method with the k-nn classifier in the

original space denoted as (NN), the classic PCA and LDA

algorithms and a collection of more sophisticated manifold

learning techniques, namely LPP [5], LFDA [3] and LDE [7]

along with kernelized versions for the last two. The recog-

nition accuracy of the k-nn classifier in the learned subspace

is reported. The parameters of each algorithm are empiri-

cally tuned for every dataset. In the kernelized version of the

algorithms, we employ the rbf kernel with σ = 1. In the

ORL database we perform 5-fold cross validation, whereas in

SKETCH dataset we follow the protocol of [13] and perform

3-fold cross-validation with stratified sampling.

3.2. Results

The evaluation results are illustrated in Table 1. NN accu-

racy indicates that AT&T dataset is easy. We observe that

the discriminant manifold learning algorithms perform better

than PCA, LDA and the unsupervised LPP. DPLE and KD-

PLE achieves the highest recognition rates in this dataset.



Method ORL SKETCH

Linear

NN 97.5% 45%

PCA 98% (p = 32) 41.97% (p = 250)

LDA 98% (p = 24) 41.2% (p = 100)

LPP 96.25% (p = 20) 41.74% (p = 300)

LFDA 98.5% (p = 12) 48.10% (p = 120)

LDE 98.5% (p = 21) 48.18% (p = 120)

DPLE 99% (p = 23) 49.02% (p = 100)

Kernelized

KLFDA 99% (p = 24) 48.93% (p = 95)

KLDE 99.25% (p = 21) 52.64% (p = 200)

KDPLE 99.25% (p = 23) 53.70% (p = 253)

Table 1. Best recognition rates in the evaluation datasets.

SKETCH dataset is more challenging and exposes the dis-

advantages of each method. PCA and LDA output much

lower rates than NN, highlighting the limitation induced by

the Gaussian distribution assumption of these methods. LPP

also fails to meet NN accuracy because of its unsupervised na-

ture. LPP solely focuses on data structure preservation, hence

generates non-discriminant projection bases. All the linear

versions of the discriminant manifold algorithms, namely

LFDA, LDE and DPLE, outperform the NN accuracy. DPLE

demonstrates the higher rate among the linear techniques.

We further evaluate the recognition accuracy of the ker-

nelized versions of the algorithms. KDPLE achieves again

the best recognition rate and performs constantly better than

KLFDA and KLDE under various dimensionality setups as

Figure 1 shows. The superiority of KDPLE is accredited to

the exploitation of the pairwise relationships between data

pairs and the importance factor assigned to each train sam-

ple by matrix D. We also note that the kernelized extension

of DPLE offers a significant accuracy boost.

4. CONCLUSIONS

We have presented DPLE, a supervised manifold learning al-

gorithm that generates discriminant embeddings with a con-

vex optimization process based on pairwise relations between

the data. A non-linear variant of the algorithm is also il-

lustrated. We have demonstrated the superiority of DPLE

over competitive dimensionality reduction techniques in two

recognition datasets. Future work could be concentrated on

the online updating of the projection matrix upon new sample

arrival.
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Fig. 1. Sketch recognition accuracy of kernelized algorithms

across varying dimensionality using k-nn classification. KD-

PLE constantly outperforms the rest methods.
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