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Abstract

In order to track and estimate the pose of known
rigid objects with high accuracy in unconstrained envi-
ronment with light disturbance, scale changes and oc-
clusion, we propose to combine 3D particle filter (PF)
framework with algebraic pose optimization in a closed
loop. A new PF observation model based on line sim-
ilarity in 3D space is devised and the output of 3D
PF tracking, namely line correspondences (model edges
and image line segments), are provided for algebraic
line-based pose optimization. As a feedback, the opti-
mized pose serves as a particle with high weight during
re-sampling. To speed up the algorithm, a dynamic ROI
is used for reducing the line detection and search space.
Experiments show our proposed algorithm can effec-
tively track and accurately estimate the pose of freely
moving 3D rigid objects in complex environment.

1. Introduction

Many applications require tracking and pose estima-
tion of a known object in real-time with high accuracy
based on visual sensors. These include Augmented Re-
ality systems, visual servoing of robotic arms for cap-
turing object, etc. The aim is to continuously recover
all six degrees of freedom that define the camera posi-
tion and orientation relative to the object.

Conventional methods often assume that certain fea-
ture correspondences are available between the 2D im-
age and 3D model of the object. These correspondences
are assumed to be easily established in each frame, for
example, point correspondence [4, 7], line correspon-
dence [3, 6], where fiducials, or markers are required. In
our work, we focus on marker-less, low-texture, freely
tumbling objects. The 3D model of the object is known
or can be reconstructed on-line using methods such as
structure from motion. Since textures or fiducials are
absent, we depend on object edges for tracking because

edges are rich on man-made equipments and easy to de-
tect in images. They offer a large degree of invariance to
pose and illumination changes and have some resilience
to difficult imaging conditions (noise and blur). The
primary disadvantage of edges as features to track is
that one image line looks much like another. Therefore
we employ Particle Filter tracking to identify edge/line
pairs and further optimize the pose algebraically based
on these correspondences.

In related work, Pupilli et al. [8] firstly developed
a particle filter framework for 3D object tracking based
on edges, which was further improved in [9] by group-
ing the edge segments into junctions. [5] firstly ex-
ploited capacity of GPU to perform likelihoods evalu-
ation. A more general GPU-based particle filter frame-
work was proposed in [2]. There are two main draw-
back of particle filter, namely, low accuracy and high
computational complexity. [2] tried to improve the
accuracy by only increasing the number of particles
and achieve real-time implementation based on GPU-
acceleration. A similar work is [1] which improved the
performance by a new observation model which mea-
sures particle weights in object space instead of on 2D
image plane.

In this paper, we firstly propose a new observation
model in object space in order to better measure the
likelihood of observation and each particle. We then
combine particle filtering with algebraic pose optimiza-
tion in a closed loop to improve the 3D pose accuracy
using only a small number of particles. To further speed
up, we propose a dynamic image ROI to reduce line de-
tection and search space. Finally, experiments are con-
ducted to show the performance of the proposed method
in tracking low texture freely moving target under light
changes in clutter background and occlusion.

2. Method

The framework of our method is shown in Fig. 1.
Unlike the previous methods, we combine the alge-
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Figure 1. Algorithm flowchart

braic pose estimation and 3D particle filter tracking in
a closed loop. Firstly, a rough pose is obtained through
3D particle filter tracking. Based on the pose and model
information, all possible 3D edges are projected onto
the image to identify the extracted line segments. By
this end, the correspondences between the 3D model
edges and 2D selected line segments are built. Then,
pose is optimized using Mirzaei’s method [6]. Fur-
ther more, this optimized pose information serves as a
highly confident re-sampling center during model up-
dating in order to guarantee the convergence of the par-
ticle filter.

2.1 Problem Formulization

The relative pose state between the camera and the
object is represented by position and orientation, rep-
resenting by Rodrigues’ vector. Thus the pose state is
given by: X = [r1, r2, r3, tx, ty, tz]

T , and [R, t]T in
short. At frame k, it is denoted by Xk. The 2D edge
map in the current frame k forms the observation yk.
The sequence of observations up to the current frame
then is denoted y1:k. Tracking then involves recur-
sively approximating the posterior density p(Xk|y1:k).
In particle filter, the posterior is represented by a set of
weighted particles X1

k , X
2
k , ..., X

S
k . The weight wsk is

proportional to the likelihood of the observation given
the pose state and model information, p(yk|Xs

k, Z),
where Z denotes model prior and

∑S
s=1 w

s
k = 1. There

two key components of PF, state dynamics and obser-
vation functions. The state dynamics describes the state
evaluation probability between time steps. As we focus
on freely tumbling objects, the random walk [1] model
is adapted, i.e.

p(Xk|Xk−1) = U(Xk−1 − v,Xk−1 + v), (1)

where U denotes uniform distribution and v is the un-
certainty about the incremental movement.

θ

Figure 2. Perspective projection of 3D line

2.2 Observation Model

Let the edge set extracted from the observa-
tion (frame) be Sl = {l1, l2, ..., li, ..., ln}, where
each edge line is represented by two 2D end-points
(p1i , p

2
i ). Let 3D model be a set of 3D edges, Z =

{L1, L2, ..., Lj , ..., Lm}, where each edge is repre-
sented by two 3D end-points (P 1

j , P
2
j ). Here, our

method only requires the 3D information of some the
salient edges instead of the full CAD model. These
edges can be only from a part of a big target, such
as an attached component. A perspective projection
from a 3D point P to 2D image p can be given as
p ∼ K · [RP + t] with K the pre-calibrated cam-
era intrinsic matrix. We further define the rigid trans-
formation F which operates on the end points of a
3D line from object coordinate to camera coordinate,
i.e.,LC = F(L,Xs

k). To compute the likelihood, [1]
used a function related to the number of the model 3D
lines whose projection into the camera frame are within
a given threshold of extracted projection planes, i.e.,

p(yk|Xs
k, Z) = exp{−

n∑
i=1

m∑
j=1

ρ( ~Ni · F(Lj , X
s
k))},

(2)

where ~N = ~n1 × ~n2 is the normal of the projection
plane deduced by a line on image as shown in Fig. 2
and ρ( ~Ni · F(Lj , X

s
k)) indicates whether the 3D line

Lj is an inlier or outlier w.r.t. the observation and state,
i.e.,

ρ( ~Ni, Lj , X
s
k) =

{
1 if ~Ni · F(Lj , X

s
k) < ε

0 otherwise
. (3)

This observation model was proven more powerful than
measuring the likelihood in 2D image but the func-
tion 1) failed to consider the relative localization of 3D
model lines to optical rays deduced by image points; 2)



Figure 3. Identify line-correspondences

assigned each pair with only two scores, 0 and 1, which
limited the diversity of particles resulting in heavy de-
generacy phenomenon when tracking fast moving ob-
jects; 3) the constant threshold in the function is sen-
sitive to distance changes. Therefore, we have devised
a new observation model in order to better measure the
likelihood of 2D and 3D pairs

ρ( ~Ni, Lj , X
s
k) =

 e
−(λ1

θ

εθ
+λ2

d

εd
)

if(θ < εθ)&(d < εd)
0 otherwise

,

(4)

where θ is the angle between predicated 3D line and the
projection plan. d = (d1 + d2)/|(P 1 + P 2)/2| is the
sum of the distance of the two end points to their nearer
optical ray, divided by the the distance between the mid-
dle point and camera center, as shown in Fig. 2. λ1 and
λ2 is designed to balance the relative importance of the
angle and distance information. Finally, the weight of
each particle is given by wsk =

p(yt|Xs
k,Z)∑S

k p(yt|Xs
k,Z)

and the
tracked output is

X̂k =

S∑
s=1

wsk ·Xs
k. (5)

2.3 Pose Estimation and Re-sampling

To this end, we have built a framework for 3D ob-
ject tracking, however, in some application areas such
as servoing control where high accuracy is required, we
have to further improve the output. Based on the tracked
output X̂ , according to perspective projection, the vis-
ible object edges, Zv ∈ Z, are projected to the image
frame as SPl = {lP1 , ..., lPm′}, m′ ≤ m. Our purpose is
to find a real edge segment from image line set Sl for
each projection, in other word, to identify meaningful
line segments and find 3D-edge/2D-line pairs. The out-
put from tracking makes this step easy for implementa-
tion as the estimated projection is very close to its real
image as shown in Fig. 3, in which red lines are line
detection result and green lines are projection of mean-
ingful model edges using tracked pose, and the closed
line can be identified by searching in a small neighbour
area. Therefore, the correspondences of this frame is
{L1 ↔ l5, L2 ↔ l3, ..., L6 ↔ l1}. When at least

4 pairs of line correspondences are found, we employ
the method proposed in [6] to compute an optimized
pose X̄ . The key idea behind this method is to find a
global minimum of the least-squares cost function for
orientation error using algebraic geometry techniques
firstly and then the position is determined. No initial
estimate is required and the computational cost is only
linear in the number of measurements. To make full use
of the optimized pose, we treat it as a particle with state
predication X̄ and compute the weight as standard par-
ticles, mostly, the highest value, and then normalize all
the particle weights. We adapt the standard Sequential
Importance Re-sampling (SIR) procedure during which
new particle is selected at a frequency proportional to
its importance weight. In this way, we close the loop
by adding an optimized pose as a feedback to the 3D
tracking.

2.4 Dynamic ROI

From above description, the computational complex-
ity is determined by the number of line segments in im-
age because of ergodic searching. In order to speed up
the algorithm, we propose a dynamic ROI to reduce the
search space. Once the pose of the object is established,
a bounding box b of the object on image can be detected
according to the projection. We scale the bounding box
to b+ by adding perturbations on four sides consider-
ing object movement. In the following frame, instead
of detecting lines in the whole image, we only favour
the lines lie in the ROI, b+. In this way, we greatly
decrease the detection and search space particularly in
clutter background environment.

3. Experiment

In this section, we built a simple satellite model as
tracking target as shown in Fig.3. The main part is
a cube with a rectangle board on left and right faces.
On the front face, there are 5 fiducial points at differ-
ent height. In experiment, we empirically set particle
number as 400, εd = 0.2, εθ =

π

6
, λ1 = λ2 = 0.5.

Firstly, we test the robustness of our algorithm on
satellite model moving in complex environment with
light disturbance, clutter background and occlusion.
Image frame examples from experiment are shown in
the first row in Fig. 4. The red lines are detected edges
using Hough Transform. The magenta lines are projec-
tion result of six edges on model which fit the image
edge well and the green dots in the right two images are
projection deduced by predicated pose of all the parti-
cles. We also tried to track the fiducial points based on
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Figure 4. Image frame examples
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Figure 5. 3D pose and error comparison

appearance but failed when light disturbance and occlu-
sion occurs. On the contrary, according to the result,
our edge-based 3D PF tracker is much more robust to
disturbance in this challenging environment.

To show to efficiency of our new observation model
we compare with similar model in [1]. In order to
track fiducial points and acquire benchmark pose, we
carry out the experiments in simple background with-
out heavy disturbance. Based on tracked fiducial points,
we use the PnP method in [7] to compute benchmark
pose. Example frames are shown in second row of
Fig.4 of which the camera is approaching the target
and adjusting the rotation from a distance around 4m
to 1m at Z direction for all 1450 frames. Our pro-
posed closed-loop algorithm is realized of which 6 cor-
responding edge/line pairs are identified and passed to
algebraically pose optimization. As a feedback, the op-
timized pose is treated as a particle with high weight in
re-sampling. The benchmark 3D pose, tracked result of
[1], our proposed tracked result and optimized 3D pose
along with the error (position and rotation) w.r.t bench-
mark are compared and shown in Fig. 5. According
to the result, when the camera agent starts approaching
the target at a fast speed, after around frame #700, [1]
sharply loses performance while there is no significant
change of our proposed tracking. In the whole process,

our proposed observation model works better. Due to
our closed-loop, we can achieve high accuracy in pose
estimation (< 5mm in position and 2◦in rotation). The
dynamic ROI predication for next frame, as the blue
rectangle in right two frames of the first row in Fig. 4,
guarantees our algorithm works in a fast speed. In this
experiment, the average FPS with and without dynamic
ROI is respectively 16.2 and 5.3. The improvement is
more significant in clutter background.

4. Conclusion

In this paper, we have combined 3D particle filter
tracking and algebraic pose optimization in a closed
loop for pose estimation of known model rigid objects.
Our proposed observation model which integrates dis-
tance and angle information to measure the line similar-
ity in 3D space. Object pose is optimized algebraically
based on tracking result and serves as a feedback for
particle filter re-sampling. At last, our proposed dy-
namic ROI guarantees our algorithm effectively works
in real-time. The performance of our algorithm is vali-
dated on tracking freely moving object in complex en-
vironments.
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