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Random Subspace Supervised Descent Method for
Computer Vision Problems

Heng Yang, Xuhui Jia, Ioannis Patras, Kwok-Ping Chan

Abstract—Supervised Descent Method (SDM) [9] has shown
competitive performance in solving non-linear least squares
problems in computer vision and gives state of the art results for
the problem of face alignment. However, when SDM learns the
generic descent maps, it is very difficult to avoid over-fitting on a
set of training data, due to the high dimensionality of the input
features. In this paper we propose a Random Subspace SDM
(RSSDM) that maintains the high accuracy on training data
and improves the generalization accuracy. Instead of using all
the features for descent learning at each iteration, we randomly
select sub-sets of the features and learn an ensemble of descent
maps in the subspaces, one in each sub-set. Then, we average
the ensemble of descents to calculate the update of the iteration.
We test the proposed methods on two representative problems,
namely, 3D pose estimation and face alignment and show that
RSSDM consistently outperforms SDM in both tasks in terms
of accuracy. RSSDM also holds several useful generalization
properties: e.g. it is more effective when the number of training
samples is small and less sensitive to the changes of the strength
of the regularization.

Index Terms—Supervised descent method, face alignment, 3D
pose estimation, random subspace.

I. INTRODUCTION

Newton’s gradient descent method has been successfully
applied in many non-linear optimization problems. However,
when it is applied to computer vision problems, there are
many drawbacks of this second order optimization scheme.
For example, 1) some popular features like the Histogram of
Oriented Gradients (HOG) [3] are not twice differentiable; 2)
computation of the Jacobians and Hessians is very expensive.
To tackle such issues, Xiong and De la Torre [9], [8] proposed
a Supervised Descent Method (SDM). Similar to Newton’s
method, given an initial estimate of the state of an object
x0 ∈ Rp×1 (e.g. this can be a p dimensional 3D pose
vector of an object, or a 2D shape vector representing the
locations of facial landmarks in an image), SDM creates a
sequence of descent maps R0, · · · ,Rk, · · · . Each update step
is represented as:

xk+1 = xk −Rk(h(xk)− h(x∗)) (1)

where h : Rn → Rm, is a transformation that varies according
to different applications. It can be regarded as a generalized
feature extraction term. For instance, in face alignment case,
h(x) represents the HOG values computed in the local patches
extracted from the landmarks with shape x. In 3D pose
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estimation case, h(x) is the image projection of the 3D model
points. x∗ represents an optimal solution. In this way, the
learned sequence {Rk} moves the initial shape vector x0

(average face shape or 3D pose) towards the optimal solution
x∗. The key contribution of SDM is the supervised learning
of {Rk} by minimizing the L2 norm of the shape or 3D
pose difference. It is based on a large number of training
samples generated by Monte-Carlo sampling methodology. In
the proposed method, Rk is a linear regressor. We note that
for application like face alignment, since x∗) is unknown at
test time, h(x∗) is simplified as an additional bias term in the
linear regression function during both training and testing. The
SDM has shown very good performances in several important
computer vision problem such as 3D pose estimation and
template tracking. It is regarded as the benchmark approach
for face alignment, which is a crucial step for face recognition,
face animation and facial expression recognition.

However, when developing the SDM model in practice, two
main problems arise:

• In order to learn an optimal Rk, at least m training
samples are usually required, with m the dimensionality
of the feature space. Otherwise, the system is under-
determined. m is usually very big, for example, in face
alignment application of [8], m = 66 × 128 ( 66 is
the number of facial landmarks and 128, HOG feature
length). Moreover, the closed-form solution of such equa-
tions requires the inversion of matrix of size m×m, which
is computational expensive.

• The linear function, mapping Rm → R1, is very likely to
over-fit the data during the training time. Regularization
is required therefore a free parameter needs to be tuned
empirically. However, when both the number of samples
and the feature space are large, a single linear regression
struggles to avoid over-fitting a set of training data while
maintaining good performance.

In this paper, we propose a Random Subspace SDM (RSSDM)
to overcome the drawbacks mentioned above and improve the
generality, inspired by the Stochastic Discrimination theory
[6]. At each iteration, instead of learning one linear regression,
we learn several of them, each of which is based on randomly
selecting a small number of dimensions from the feature space,
e.g. a Random Subspace. Then, we use such an ensemble
of linear regressors to represent the descent map. We test
the proposed method in two representative application cases
of the SDM, i.e., face alignment and 3D pose estimation
to demonstrate the benefits of our approach. More specif-
ically, our method (RSSDM): 1) can naturally handle the
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Fig. 1: RSSDM for face alignment. The image on the left
shows the current pose. Then several subspaces are randomly
generated, of which the cyan landmarks are selected and the
red are not selected (Best viewed by zooming in). The update
of one iteration is the average of outputs from several weak
regressors.

under-determined issue by transforming full feature space into
subspaces and shows significantly better performance when
training samples are limited ; 2) shows great advantages in
dealing with over-fitting and is more robust to regularization
parameter changes; 3) can achieve monotonic increase in
generalization accuracy w.r.t. SDM and obtain performance
superior or close to other recent methods.

II. RANDOM SUBSPACE SDM

In the section, we first present the Random Subspace SDM
for face alignment and then for 3D pose estimation. The main
difference of those two applications is that, for face alignment,
y = h(x∗) (i.e., the HOG features extracted from the optimal
locations of facial landmarks) is unknown while for 3D pose
estimation y = h(x∗) (i.e., the image projection under the
optimal 3D pose) is known.

A. Random Subspace SDM for Face Alignment

Similar to the setting of other face alignment models, at
training time, a set of N images I = {Ii}Ni=1 are available,
along with their ground truth locations of facial landmarks
X = {xi

∗}. Thus x ∈ R2p×1, with p the number of facial
landmarks. In what follows we refer to x as the shape of a
face. Similar to most of the face alignment models, our method
also assumes that the face detection is available both in the
training and in test images. We represent the face bounding
box from the face detector as bi = (bic, b

i
w, b

i
h), with bic ∈ R2

the face center, biw the width and bih the height. Then the
location of the j-th landmark vector xi,j , containing the x and
y coordinates, can be translated by the box center and scaled
by the box size, which we will refer to as normalized by bi:

N (xi,j ; bi) =

(
1
biw

0

0 1
bih

)
(xi,j − bic) (2)

Since the face box provides the scale information, the image
is transformed as to ensure the face box is at a canonical
size (width and height), which is denoted by (b̄w, b̄h). The
scale factors are (siw, s

i
h) with siw = b̄w

biw
, sih = b̄h

bih
. The

initial shape estimate is given by centering the mean face at
the canonical face box, that is denoted by x0. In the rest of
the paper, we assume the shape vectors and the images are
transformed by the face boxes. We also generated 10 samples

by perturbing the face box for each training image using
Monte Carlo methodology as described in [8]. This augments
the training samples by a factor of 10. We will treat each
of them as a unique sample. Then for the i-th sample, the
desired update (error vector) is ∆xi

0 = xi
∗−xi

0. HOG features
around each landmark under the current shape are extracted
φ̃i0 = h(Ii, xi0). Since x∗ is not available for this problem we
added a bias term to the feature vector for linear regression
so that the feature vector becomes φi0 = [(φ̃i0)T , 1]T . Thus we
seek for R0 that minimizes:

arg min
R0

∑
i

||∆xi
0 −R0φ

i
0||2 (3)

The above least squares problem can be solved in closed-
form given sufficient samples (equations). Then by applying
the learned regressor Rk−1, we can update the current shape
xi
k by adding the update. The new optimal update becomes

∆xi
k = xi

∗ − xi
k and the new feature vector is φik. A new

regressor Rk can be learned by minimizing:

arg min
Rk

∑
i

||∆xi
k −Rkφ

i
k||2. (4)

This is the training process of SDM described in [8]. In order
to avoid over-fitting, we also introduce a regularization term
for SDM and the optimization becomes:

arg min
Rk

∑
i

||∆xi
k −Rkφ

i
k||2 + λ||Rk||2F . (5)

This formulation requires tuning the λ very well therefore
cross validation is usually applied to search for the optimal
λ. However when the size of training samples is large, which
is to guarantee closed-form solution, selecting a proper λ is
intractable. Encouraged by the success of Random Subspace
in tree construction [4], which also faces the over-fitting issue,
we adapt it for SDM. More specifically, instead of using the
whole feature space, we select several random subspaces and
train an ensemble of regressors in subspaces. For this face
alignment case, we still keep the feature structure extracted
from one landmark location. As shown in Fig. 1, from the
set of landmarks J = {j}pj=1, we select several subsets,
{Jt}Tt=1, with Jt ⊂ J . We denote the features exacted from
the landmarks in the t-th subset as φi,tk , φi,tk ⊂ φik. We then
train T regressors, one on each subset, using the corresponding
features. We then optimize the following function:

arg min
Rt
k

∑
i

||∆xi
k −Rt

kφ
i,t
k ||

2 + λt||Rt
k||2F . (6)

for each of Rt
k, t = 1, ..., T , regressors. We then simply

average the outputs of such an ensemble of regressors to
update the current shape. That is

xi
k+1 = xi

k −
T∑

t=1

Rt
kφ

i,t
k . (7)

A recursive procedure similar to the SDM is applied to the
cascade framework when the shape of each sample is updated
until the final iteration is applied. During testing time, since
we have normalized the image using Eq. 2, we apply the
inverse of of the normalization function to transform the final
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shape vector and obtain the alignment result. Assuming that
the shape estimation after applying the final iteration is xi

K ,
then the final shape estimation is:

x̂i = N−1(xi
K ; bi). (8)

B. Random Subspace SDM for 3D Pose Estimation

In this section we present how we apply the random
subspace SDM to another computer vision problem, 3D
pose estimation. This problem can be described as follows.
Given the 3D model of an object represented as 3D points
M ∈ R3×p, its image projection U ∈ R2×p and the intrinsic
camera parameters K ∈ R3×3, the goal is to estimate the
3D object pose, consisting of a rotation vector (θ ∈ R3×1)
and a translation vector tr ∈ R3×1. To be consistent, we
denote the pose vector by x = [θ; tr]. Then the objective
function becomes ||h(x,M) − U ||F , with a known K. Given
a set of poses {xi

∗} and the image projections Ui, the SDM
optimization is defined as:

arg min
Rk

∑
i

||xi
∗ − xi

k + Rk(h(xi
k,M)−Ui)||22. (9)

Similar to the RSSDM for face alignment, we propose to
use an ensemble of regressors in subspaces at each iteration.
We denote by φik = h(xi

k,M) the features extracted based on
the current pose xi

k, and φi,tk the feature in subspace t. The
corresponding image projection is Ui,t. Similar to Eq. 6, the
optimization of the regressor in subspace t is as follows,

arg min
Rt
k

∑
i

||xi
∗− xi

k +Rt
k(φi,tk −Ui,t)||22 +λt||Rt

k||2F . (10)

The update of the pose is calculated in a way similar to Eq. 7.
At testing time, with a sequence of descent maps, the RSSDM
always starts at the mean pose x0, similar to the SDM method,
and converges to the optimal solutions.

III. EXPERIMENTS

A. Face Alignment

We carry out the experiment of face alignment on the
benchmark 300W [7] database. We reimplement the baseline
SDM following the description in [9] for fair comparison. We
train the baseline SDM and our proposed RSSDM using the
training images in HELEN subset from 300W. In order to train
an optimal model for both SDM and RSSDM, at each iteration
we search for the optimal penalty parameter in a big space by
10-fold cross validation. We terminate the cascade when the
error on the training set is lower than a threshold. In this way,
we get very close training error for SDM and RSSDM.

We do a grid search for setting the parameters of RSSDM.
More specifically, we set the number of subspaces in the range
of NSP = [2 : 2 : 10] and the subspace feature dimensionality
in the range of DSP = D

[2:1:6] , where D is the dimensionality
of the original feature space. Each combination of them is
evaluated separately and we report their results in Fig. 2. When
the number of subspaces is very low, decreasing the subspace
dimension (using less features) will lead to larger error. When
the number of subspaces is at a moderate number (6 or 8),
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Fig. 2: RSSDM performance with various number of sub-
spaces and subspace dimensions.

the optimal subspace dimension lies in the middle. We select
the second best combination of (NSP = 6 and DSP = 1

3 ) in
our following experiments as it has similar run-time cost as
the original SDM (35FPS (SDM) vs. 38FPS (RSSDM) on the
same machine) while keeping good performance.

1) RSSDM vs. SDM : Then we test the model on the test
images on both the Easy-set (test images from LFPW and
HELEN) and Challenging-set (iBug images). As the results
shown in Fig. 3, RSSDM consistently performs better than
SDM on both the Easy set and the Challenging set. Since
the performance on the Easy set is near saturation, with the
detection rate close to 100% at the error rate of 0.15, the
improvement of RSSDM over SDM is small. The improve-
ment on the Challenging set is larger, with 4% improvement
at error rate of 0.1. The overall improvement is not huge but
significant. The statistical hypothesis (the same mean error)
test is rejected with high confidence (p <0.0001). Moreover, as
we will show in the following, the proposed RSSDM scheme
has benefits in certain circumstances, while still keeping
monotonically increasing performance in accuracy w.r.t. SDM.

2) Sensitivity to number of Monte-Carlo permutations: In
this section, we compare the performance of RSSDM and
SDM when the permutation number changes. As stated in
[9], the generic DM only exists within a local neighbourhood
of the optimal parameters. Therefore in the training process,
the number of Monte-Carlo permutations affect the results
significantly. In this section, we evaluate the sensitivity of our
RSSDM and SDM to the Monte-Carlo number. We set the
system parameters including the regularization parameters and
the number of iterations of both methods to the optimal ones
learned from above section. Then we decrease the permutation
number from 9 to 1 with step size 2 and calculate their per-
formance on the Easy and Challenging test sets respectively.
The result is shown in Fig. 4. As expected, the error of both
SDM and RSSDM increases while the number of Monte-Carlo
permutations decreases. However, the impact on RSSDM is
less. On the easy set, the mean error increases from 2.74%
to 2.85% for RSSDM while that of SDM increases from
2.83% to 3.26%. On the Challenging set, the mean error of
RSSDM increases from 8.55% to 9.03% while that of SDM
increases from 8.89% to 10.22%. Based on this observation,
we can make the conclusion that, the proposed RSSDM is
less sensitive to Monte-Carlo permutation reduction. Another
conclusion we can draw from this experiment is that, RSSDM
is able to obtain better performance when the training samples
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Fig. 5: Sensitivity to λ

are limited. RSSDM with 3 Monte-Carlo permutations can
achieve similar performance to SDM with 9 Monte-Carlo
permutations. This is a very useful property under the cir-
cumstance when it is intractable to generate a large number
of Monte-Carlo samples.

3) Sensitivity to λ: In this section, we measure the sen-
sitivity of RSSDM and SDM to the regularization parameter
λ. In the previous discussion, we have obtained the optimal
λ at each iteration. Assuming that the optimized λ is λ∗,
we retrain the models using λ with the following values
[0.1λ∗, 0.5λ∗, λ∗, 5λ∗, 10λ∗] and record their results. As can
be seen in Fig. 5, when the regularization parameter shift
from the optimal one, the error for both RSSDM and SDM
increases. However, RSSDM shows better performances in
terms of robustness to such changes. For instance, on the easy
set, when λ changes from λ∗ to 10 times larger, the mean error
of SDM increases nearly 0.6 while that of RSSDM increases
only 0.25. On the Challenging set, the error increase of SDM
is 0.8 while that of RSSDM is only 0.3. This can be explained
by the ensemble strategy of the RSSDM method, of which in
each iteration, the update is an average of the outputs from
several weak regressors.

4) Comparison to state of the art: Face alignment is a very
active research topic and many techniques have been proposed
[10], [13], [11], [5]. Due to the limited space, we only compare
the methods that are related to SDM, including the public
available code of SDM (SDM-A), our implementation of SDM
(SDM-B), the Incremental Face Alignment (IFA) model in
[2] and CFAN [12]. The IFA is a variant of SDM that can
be trained in a parallel way and also trained on the 300W
dataset using HOG features. CFAN also follows the SDM
scheme and is trained on 300W but uses features learned from
auto-encoder networks. The localization error of the inner 49
facial landmarks are recorded, as SDM-A does. In order to
be consistent to [8], [2], the error is normalized by the inter-
ocular distance instead of the face size in this experiment.
Our implementation of SDM (SDM-B) performs on par with
the publicly available model (SDM-A), which validates the
implementation process. The proposed RSSDM outperforms
the two versions of SDM as well as IFA. Though on the
easy set, by using more complicated learned features, CFAN
performs slightly better than RSSDM, on the difficult set,
RSSDM has better performance.

TABLE I: 300-W dataset (49 landmarks).
Method Full-set Easy-set Challenging-set

CFAN [12] 7.24 4.85 17.04
IFA [2] 8.30 5.48 19.88

SDM-A [8] 7.06 5.56 13.22
SDM-B 6.86 5.45 12.66
RSSDM 6.17 4.95 11.20

B. 3D Pose Estimation

In this section we evaluate the performance of RSSDM on
another computer vision problem, 3D pose estimation. As we
discussed before, our method is proposed for the situation that
the feature space is much bigger than the output space. Thus
we use a human body 3D pose estimation [1] to demonstrate
the performance. The body consists of 996 3D key points thus
its image projection contains 996× 2 dimensions of features.
We follow the experimental setting as [9]. More specificity, the
virtual camera is at the origin of the coordinate system and
the intrinsic parameters are: focal length fx = fy = 1000
pixels, principle point [u0, v0] = [500, 500]. The object is
placed at [0, 0, 2000], and perturbed with different 3D poses.
Three rotation angles are uniformly sampled from −30o to
30o with increments of 10o in training and 7o in testing.
Three translation values are uniformly sampled from -400mm
to 400mm with increments of 200mm in training and 170mm
in testing. For each combination we get one training sample.
We also add white noise (σ2 = 4) on the projected points and
normalize the projection by the focal length and the principle
point of the camera. We also do a grid search for both SDM
and RSSDM for the optimal parameters by cross validation
on the training set. The result is shown in Table II. As a re-
implementation, our result of SDM is slightly different from
[9]. As can be seen in the table, both SDM and RSSDM
outperform the POSIT algorithm with a large margin. The
RSSDM further improves the accuracy over SDM, which
validates the efficacy of our proposed method in 3D pose
estimation application.

TABLE II: Rotation (o) and translation (in mm) errors.
Method θx θy θz trx try trz
POSIT 0.6±0.6 6.3±5.3 2.1±1.6 22.3±14.8 14.9±11.2 41.1±38.0
SDM 0.07±0.05 0.25±0.15 0.2±0.11 3.7±3.0 4.1±3.6 6.5±5.3

RSSDM 0.06±0.04 0.22±0.13 0.15±0.09 3.4± 3.1 3.7±3.2 5.2±4.3

IV. CONCLUSION

In this paper, we proposed a simple yet effective Random
Subspace Supervised Descent Method (RSSDM). We compare
RSSDM to SDM on Face Alignment and 3D pose estimation
and obtain better performance in estimation accuracy. It also
holds several other interesting properties, i.e., RSSDM is
significantly more effective than SDM when the Monte-Carlo
number is small and less sensitive to the regularization term.
We believe these properties are important in designing a
real system. As an initialization dependent method, similar
to SDM, RSSDM is still sensitive to unreliable initialization.
Thus, we will investigate a reliable way of initialization in
future research.
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