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Abstract

The research presented in this thesis aims to extend the capabilities of tra-

ditional content-based image retrieval systems, towards more expressive and

scalable interactions. The study focuses on machine sketch understanding and

its applications. In particular, sketch based image retrieval (SBIR), a form

of image search where the query is a user drawn picture (sketch), and free-

hand sketch recognition. SBIR provides a platform for the user to express

image search queries that otherwise would be difficult to describe with text.

The research builds upon two main axes: extension of the state-of-the art

and scalability. Three novel approaches for sketch recognition and retrieval

are presented. Notably, a patch hashing algorithm for scalable SBIR is intro-

duced, along with a manifold learning technique for sketch recognition and a

horizontal flip-invariant sketch matching method to further enhance recogni-

tion accuracy.

The patch hashing algorithm extracts several overlapping patches of an

image. Similarities between a hand drawn sketch and the images in a database

are ranked through a voting process where patches with similar shape and

structure configuration arbitrate for the result. Patch similarity is efficiently

estimated with a hashing algorithm. A spatially aware index structure built

on the hashing keys ensures the scalability of the scheme and allows for real

time re-ranking upon query updates.

Sketch recognition is achieved through a discriminant manifold learning

method named Discriminant Pairwise Local Embeddings (DPLE). DPLE is

a supervised dimensionality reduction technique that generates structure pre-

serving discriminant subspaces. This objective is achieved through a convex

optimization formulation where Euclidean distances between data pairs that

belong to the same class are minimized, while those of pairs belonging to

different classes are maximized.

A scalable one-to-one sketch matching technique invariant to horizontal

mirror reflections further improves recognition accuracy without high compu-

tational cost. The matching is based on structured feature correspondences

and produces a dissimilarity score between two sketches.

Extensive experimental evaluation of our methods demonstrates the im-

provements over the state-of-the-art in SBIR and sketch recognition.
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1.1 Motivation

The exponential growth of publicly available digital media during the last two

decades has highlighted the need for efficient and user-friendly techniques to

index and retrieve images from large multimedia databases. Nowadays, the

utility of scalable retrieval algorithms manifests bolder than ever. Despite

the considerable progress of content-based image retrieval (CBIR) [35, 116],

where the goal is to return images similar to a user-provided image query, most

of the multimedia searches are traditionally text-based (e.g. Google Images,

YouTube, Bing Images). Currently, out of all the big web image search engines

only Google provides the possibility to search by image. Text-based image

search requires user intervention to tag all the available data and has two main

drawbacks: i) Image labeling is a laborious, time consuming task and most

importantly subjective ii) Images cannot be succinctly communicated based on

words; different people would probably use different words to describe a scene

based on their cultural background and experience. On the contrary, CBIR

techniques allow effortless tagging and export non-biased image summaries,
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but suffer from the so-called semantic gap. That is the discrepancy between

human and computer representation of knowledge on a topic.

Endeavors to bridge the semantic gap led to extensive research on fea-

ture extraction and relevance feedback methods for CBIR, while application-

oriented aspects such as interface, visualization, scalability, and evaluation

have traditionally received lesser consideration [35]. To remedy this imbal-

ance, sketch based image retrieval (SBIR) emerged. Frequently, users are

looking for an image without having any related image available. Therefore,

they need a natural way to express their query. Consider the example in

Figure 1.1, the users have a particular image on their mind, which cannot

be easily expressed with text. If they attempt to make a text-based image

search using the keyword mountains, the results will be very generic and time

needs to be spent browsing the collection for desired images. In this scenario,

a sketch query consists a straightforward and intuitive way to describe the

users’ thoughts to the machine. Obviously, a detailed rendition of the query

requires artistic skill. A more convenient way, which this work adopts, is to

sketch the main feature lines of a shape or scene. The sketch can be drawn us-

ing the mouse of a personal computer or the touch screen of a modern mobile

phone. Furthermore, recent studies have shown that lines are drawn along

contours [29] and line drawings can encode certain shapes almost as well as

shaded images [30].

The intuitive sketch generation process can be effortlessly ported to other

platforms apart from personal computers, especially smart phones and tablets

offer a fruitful market and their users embrace new technologies. Drawing on a

touch screen device is admittedly easier and the produced sketches more accu-

rate than those of the traditional mouse interfaces [46]. Despite the appealing

advantages, SBIR research faces many open questions. Current approaches

are mostly based on successful CBIR models and while promising results have

been published, there is still room for vast improvements. The main challenges

of SBIR are the discrepancy between color images, which contain rich informa-

tion combined with noise from various sources, and terse sketch drawings, as

well as recognition of common drawn sketch symbols human often use to rep-

resent common objects (i.e. a stick-man instead of a realistic human figure).

The latter plays an important role to discard semantically irrelevant results
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Retrieved 
Images

Sketch Query

Figure 1.1: What will be the appropriate text query for the above search
scenario? A sketch query is more expressive in this case.

that the retrieval algorithms conceive as visually similar, thus enhancing the

overall quality of the top ranked retrieved images. Moreover, it bridges the

modality gap between images and sketches, as many sketched symbols do not

have one-to-one correspondence with photos. This thesis addresses both these

problems by presenting novel scalable techniques achieving state-of-the-art

results.

This chapter first introduces the concept of content based image retrieval

in Section 1.2, which lays down the foundations of SBIR . Next, the objec-

tives of the thesis are presented and a framework is developed upon them in

Section 1.3. Section 1.4 summarizes the contributions of this work. Finally,

Section 1.5 gives an overview of the organization of the thesis.

1.2 Content Based Image Retrieval

Content based image retrieval attempts to establish visual similarities between

an image collection and an image query. The word content on the definition

points out that the search is based on image features and excludes metadata,
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Visual 
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Visual 
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Retrieved
Images

Figure 1.2: Generic schema of content based image retrieval

such as tags or labels. As image feature is considered any information we can

extract from an image. Some of the most common modalities are color, shape

and texture and have been extensively used in the literature [35, 116].

A generic schema of a content-based image retrieval system is outlined in

Figure 1.2. There are two stages, first in the offline stage (top of Figure 1.2)

a visual signature is extracted from all the images of the database and sub-

sequently stored in an index structure. In the online or query stage, a new

unknown image arrives, usually provided by the user. Again, its visual signa-

ture is extracted and compared against the database. A similarity function

is in charge of generating a ranking of the database images. Both the visual

signature and the similarity function can vary depending on the application

requirements. A fundamental assumption of the feature extraction process is

the expectation that images with similar content will produce similar signa-

tures and vice-versa.

There is a vast range of fields where CBIR have been applied. Medical

imaging [93], painting retrieval [20] and digital forensics [26] are a few exam-

ples. Google recently introduced a generic CBIR system for web image search
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Figure 1.3: Sketch query examples.

1, where users can upload an image query. Google Goggles is a commercial

CBIR application that can retrieve landmarks and logos. It follows from the

above that CBIR is a well-established research field, yet in the frequent case

when a user seeks a particular image an expressibility barrier rises. Specif-

ically, there is no specified input mechanism to describe the aforementioned

image, hence the search is rendered void. Sketch based image retrieval pro-

vides a solution with an interactive query generation approach.

1.3 A Semantic SBIR Framework

Sketch is defined as a rough or unfinished drawing or painting, often made to

assist in making a more finished picture [115]. In the case of SBIR, sketch is a

hand-drawn rendition provided by the user with the purpose of finding a range

of visually similar images. Researchers have been experimenting with various

sketch types, color sketches [60, 61], shaded sketches or even combinations of

drawing and text [78, 19]. A detailed discussion of these approaches can be

found in the state-of-the-art chapter. In this work, we adopt sketches that

are simple curve drawings and define the boundaries of an object or a scene.

Some examples are illustrated in Figure 1.3. This design path is primarily

taken to keep the query generation process simple and user friendly. However,

our decision is also based on findings of [29, 30] which state that rough contour

drawings can describe shape equally well to shaded sketches.

By slightly modifying the generic CBIR case, an appearance-based SBIR

system can be developed. The modification takes place in the offline stage

by adding an edge detection step prior to visual signature extraction. Each

1http://www.google.com/insidesearch/features/images/searchbyimage.html

http://www.google.com/insidesearch/features/images/searchbyimage.html
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image is subject to edge detection in an attempt to bridge the modality gap

with the sketch queries. Besides that, the functionality remains the same. It

becomes quickly evident that there are performance limitations on a SBIR

system solely based on content similarities. Major contributors to that are

a) the modality gap between images and sketches; b) the noise introduced by

the edge detection process; c) the quality of the provided sketch query; d) the

lack of semantic interpretation of the drawn sketches. The first two issues are

handled by the feature extraction and dissimilarity evaluation techniques, the

third is out of the application’s control; unless a drawing helper tool is added

to the loop [72]. Finally, the fourth can be tackled by infusing semantics priors

into image retrieval.

Semantic retrieval attempts to improve image search accuracy by switching

the focus from low-level image properties to higher-level concepts that can be

deducted. Image descriptors capture observable properties of a photo, like

color or shape, but they can’t relate these properties with the search concept

of each user. For example, a user may provide an image query of a tree with

green leafs on a field of grass. An appearance-based system will most likely

return similar images rich in green tones, but what if the user intended to

look for different color variations of the tree? In that case, we need to perform

object recognition to the query image to gain understanding of what is being

depicted and return a greater variety of trees to the user. Liu et al. [79]

identify five major approaches to reduce the semantic gap: (1) using object

ontology to define high-level concepts; (2) using machine learning methods to

associate low-level features with query concepts; (3) using relevance feedback

to learn users’ intention; (4) generating semantic templates to support high-

level image retrieval; (5) fusing the evidences from HTML text and the visual

content of images for WWW image retrieval. Most of the literature follows

the second category. A successful CBIR framework should smoothly integrate

high-level semantics into the retrieval process.

This work introduces a semantic SBIR framework. It consists of a sketch

recognition component and a content retrieval component. An overview is

presented in Figure 1.4. First, the sketch recognition module attempts to cat-

egorize the incoming sketch. Successful recognition lies in the understanding

of human sketch drawing mechanics. Key properties of the recognition module
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Figure 1.4: Schema of our proposed semantic sketch based image retrieval
framework

are a large, diverse collection of human sketches and a robust machine learn-

ing algorithm. Chapters 4 and 5 investigate this problem. The recognition

step produces a categorization of the input sketch. Using this knowledge, the

returned results can be filtered accordingly to include only images that belong

to the same category as the sketch. Obviously, a labeled image database is

required. It can be readily obtained by crawling the web or using an off-the-

shelf solution. The content retrieval component establishes visual similarities

between database images and sketches and generates a ranking as in CBIR.

Both components should be scalable, robust and able to be employed in an

online SBIR environment. The next section overviews the contributions of
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this thesis towards the aforementioned goals.

1.4 Contributions

The primary aim of this work is to propose insights for a scalable, semantic

sketch retrieval framework as described in the previous section. Within this

framework, several contributions are identified.

• In Chapter 3, we present a scalable appearance-based approach to SBIR.

Our method operates on local image regions and estimates shape simi-

larity via a series of hash functions. Moreover, a location-aware reverse

index enables look-ups in constant time during the query stage. The

final rankings are generated through a voting process which enforces

holistic structure constraints. We demonstrate the superiority of our

technique over the state-of-the art in three benchmark evaluations. We

also show that our approach can scale better in large volumes of images

than other methods in literature.

• In Chapter 4, we introduce Discriminant Pairwise Local Embeddings

(DPLE), a supervised manifold learning algorithm for sketch recogni-

tion. The main idea is to learn a discriminant subspace where the data

will be better separated than in the original input space, without violat-

ing much its local neighborhood. The latter ensures that the data will

maintain their manifold structure in the learned subspace, so classifica-

tion algorithms can generalize better. We form these goals in a convex

optimization problem that can be efficiently solved through eigendecom-

position. A kernelized version is also explained to further enhance clas-

sification accuracy. Experiments in a large multi-class sketch database

demonstrate the advantages of our technique over similar dimensionality

reduction algorithms. We further show the generalization efficiency of

DPLE in a face recognition problem.

• In Chapter 5, we present a horizontal flip-invariant sketch matching tech-

nique. A dissimilarity score between two sketches is generated based on

feature and structure similarity of local patches. The flip-invariance
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property is shown to offer superior results over non flip-aware meth-

ods. Contrary to traditional slow matching techniques our approach is

able to evaluate a large number of sketch pairs in real-time. The gen-

erated sketch rankings can be employed to facilitate sketch recognition

with state-of-the-art accuracy. The projected labels are exploited in a

semantic SBIR framework that drastically improves retrieval quality.

The contributions were published in two international conferences. One

more conference submission is curretnly under review and ACM Transactions

journal manuscript is currently under major revisions. See also the Publica-

tions section for the full listing.

1.5 Thesis Overview

The remainder of the thesis is organized as follows. Chapter 2 offers an

overview of the theory and evaluation methodology in image retrieval and an

thorough review of the state-of-the-art in SBIR. Chapter 3 describes in detail

our scalable patch hashing approach for SBIR. Chapter 4 presents the the-

ory and evaluation of a novel supervised manifold learning technique, namely

Discriminant Pairwise Local Embeddings (DPLE), which is employed to recog-

nize objects in sketches. Chapter 5 describes a horizontal flip-invariant sketch

matching algorithm that further enhances recognition accuracy. In this chap-

ter, our semantic SBIR framework is experimentally evaluated. Chapter 6

summarizes the thesis and offer conclusions and future work suggestions. The

list of the author’s publications is given at the end of the thesis.
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2.1 Fundamentals of Image Retrieval

In this section, we give an overview of the fundamental components of an im-

age retrieval system. By the nature of its task, CBIR technology boils down

to two intrinsic problems: a) how to mathematically describe an image, and
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b) how to assess the similarity between a pair of images based on their ab-

stracted descriptions [35]. Roughly speaking, a visual signature is extracted

from the query image and then compared against all the precomputed signa-

tures of an image database. The original image representation of pixels with

different intensities is complex and noisy and does not include image seman-

tics. Therefore, the need for a mathematical algorithm to represent an image

based on key visual properties like color, texture, shape, is imminent in image

retrieval (IR). The produced feature vectors or visual signatures should fulfill

a number of requirements:

• Repeatability: Related images should return similar visual signatures

even after changes in illumination scale, viewpoint etc.

• Encoding of desired visual properties: Depending on the domain

of the IR application, features should be able to capute key visual char-

acteristics of an image such as shape, texture, color etc.

• Small memory footprint: Hundreds of thousands of candidate images

must be loaded to the computer memory to be compared with the query,

hence a visual signature should be kept as small as few kilobytes.

An image description algorithm could be inspired from the human vision

mechanics and at the same time generate a semantic description of the image.

The latter is analogous to the functionality of the optical center of the brain,

which receives information from the optical nerve and semantically interprets

it. Marr’s study [88] have shown evidence supporting that the Laplacian of

Gaussian (LoG) function models adequately the human visual system response

and many feature extraction algorithms adopted this filter. Gabor function

sets [43, 64] provide models of the human visual cortex area. Other methods,

such as the Wavelet Decomposition [85], has been shown to match well the

dyadic structure of receptive fields in the human primary visual cortex [5, 36]

The major properties of an image are color, shape, texture and saliency.

These features are utilized either in a global extraction framework, where a

single signature is extracted from the image, or in local extraction schemes

where several feature vectors describe small individual pixel neighborhoods.

Color features capture dominant color layout in an image, texture features
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are intended to capture granularity and repetitive patterns in a picture. For

example, a plain white wall has uniform texture while the patterns on a brick

wall result in high vertical and horizontal spatial frequencies. As a result, we

can easily differentiate these two objects in terms of texture. Texture allows

us to infer on the properties of objects in an image, thus contributes to the

reduction of the semantic gap. Shape description algorithms aim to discover

shape traits in an image. Recent shape descriptors perform well even un-

der affine or non-rigid transformations [92, 34, 77]. Shape is the key feature

for a sketch based image retrieval system due to the lack of other properties

in binary drawings, so in the following sections we will further elaborate on

shape description techniques tailored for the particular problem of SBIR. Fea-

tures based on salient points or corner points are usually extracted on local

pixel neighborhoods and can deal with significant affine transformations and

illumination distortions.

Similarity measurement is also crucial to CBIR. Datta et al. [35] identify

a large number of fundamentally different measurement frameworks that have

been proposed over the years. The major prenciples behind the design of

image similarity models are summarized below:

• robustness to noise.

• computational efficiency.

• agreement with image semantics.

Obviously, the outcome of the extraction algorithm constrains to some

extend the applicability of specific similarity measurement techniques. For

instance, if the outcome of the extraction algorithm is a vector descriptor one

may apply the Euclidean dissimilarity measurement. In the case of probability

distribution data a preferable approach could be an entropy-like measurement

such as the Kullback-Leibler (KL) divergence. Table 2.1 illustrates some of

the most popular distance metrics for similarity measurement as noted in

[35]. Every measurement has its own advantages and disadvantages; simple

methods are easily implemented and efficiently computed, but they cannot

cope with challenging data. More complex techniques offer robustness but

might be prohibitively slow for some applications. The choice of the optimal
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method is dictated by the nature of the feature extraction algorithm and the

type of retrieval system.

2.1.1 Extraction of Visual Signature

2.1.1.1 Global Feature Extraction

During the early years of CBIR global feature extraction was the dominant

technique to describe an image [116, 33, 61, 112]. In this approach, an al-

gorithm describes a picture according to globally measured properties, like

the total number of line segments or circles, the prevailing texture direction

or the dominant colors. These simplistic methods offer a generic representa-

tion of the image and cannot distinguish between local variations. In many

cases, global similarity is not enough and results in lots of false positives due

to images sharing some generic characteristics but their semantic information

is divergent. On the other hand, global features are computed efficiently and

their memory footprint is adequately small, since we describe the whole image

with just one feature vector. They can be used in a CBIR system to boost

the performance or eliminate outliers. Let’s suppose a query image depicts

an animal in a forest; a hierarchical clustering algorithm (e.g. agglomerative

clustering) based on a global color distribution will help us eliminate database

images where green is not the dominant color (e.g. desert or water images),

hence the candidate images will be significantly pruned. On the contrary, the

global color distribution alone provides little help to identify the animal in the

image.

Global feature extraction can be still useful in specific problems, hence re-

search interest has not totally concentrated on local methods. Theoharatos et

al. [122] proposed a graph-theoretic description of an image. Their represen-

tation consists of the minimal spanning tree (MST) of the graph created by

sampling pixels in the RGB space. The MST structure is unchanged under

transformations like translations, rotation and relative insensitive to small

amounts of noise. They also suggest a novel statistical similarity measure,

the Multivariate Wald-Wolfowitz test to assess whether two multidimensional

point samples {Xi}i=1,...,d coming from the same multivariate distribution. Liu

et al. [80] recently published the Diffusion Distance Shape Descriptor (DDSD)
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for comparing 3D shapes of molecules. The diffusion distance [28] is calculated

for every pair of points in a sample set, offering robustness to non-rigid defor-

mation and a histogram of the probability distribution of diffusion distances

between sample point pairs is the output of the algorithm. The DDSD was

successfully employed to molecule shape retrieval.

Global features have small computational costs and low memory require-

ments, but they lack of high descriptive capabilities. As a result, modern

CBIR approaches adopt local features as their core visual signature extrac-

tion algorithm, while global features play a support role in the process.

2.1.1.2 Local Feature Extraction

In local feature extraction, a set of properties is computed at each image

pixel using its adjacent pixels. A visual example of the local neighborhood

of a pixel is given in Figure 2.1. Since CBIR similarity evaluation algorithms

traditionally require a single visual signature to describe an image, the local

vectors of each neighborhood are usually concatenated to form a global fea-

ture vector or combined together under a weighting scheme. Obviously, the

computational cost to calculate a descriptor for every pixel is in most cases

restrictive. As we will discuss further in this section there are techniques to

reduce this computational burden.

The information extracted from each pixel’s neighborhood enables us to

obtain rich image representations. Consider again the previously mentioned

example of an image depicting an animal in a forest. This time let’s assume

that a local feature extraction algorithm is applied to extract the mean color

value of every pixel neighborhood. The returned visual signature will contain

entries representing the green color which is dominant in the image, however

there will be enough values describing the animal’s color characteristics. This

new information enables us to infer that an object is also depicted in the

picture apart from a forest. Local features can be employed to learn any

of the major image properties (i.e. color, shape, texture), plus many of the

global extraction methods can be modified into a local framework. The idea

behind this is that the descriptor calculation is performed iteratively for every

neighborhood instead of doing it once for the whole image.

Computing a descriptor at every pixel puts great burden on the hardware
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Figure 2.1: A local neighborhood (area inside the black circle) of a pixel (black
point).

and propagates complexity to the vector formulation process. To reduce com-

putational costs, an image may be divided into small blocks and features are

computed individually for each block. The features are still local because of

the small block size, but the amount of computation is only a fraction of that

required for obtaining features around every pixel. To achieve a global de-

scription of an image, each individual block vector is concatenated to a single

high-level visual signature vector or combined under more elaborate schemes

[71, 142, 120]. Figure 2.2 illustrates the block based feature extraction and

concatenation.

Recently, a popular approach is to extract local features only at salient

points. The motivation behind this scheme is that not all image regions are

equally important. As in human vision, attention is given to strong edges and

contours instead of uniform regions [88, 86, 87]. Therefore, we can compute

features only on the interesting points discarding the rest non-informative re-

gions. This method requires an interesting point detector. Currently, the most

widely adopted detector is based on the extrema of the Difference of Gaus-

sians (DoG) function proposed by Lowe [82]. Depending on the application

other approaches might be more suitable. In the case of sketch images (bi-

nary drawings), instead of trying to detect points of interest, all the edge pixels

(edgels) can be used as salient points. An average camera photo contains a

few thousands interesting points so the concatenation of all these local fea-

tures to a global vector produces a very high-dimensional visual signature. It

is known that high-dimensional representations suffer from the so called curse
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Figure 2.2: Block based local feature extraction.

of dimensionality [38]. The complexity can be reduced by the quantization of

the ensemble of features vectors with the help of a predefined codebook which

is usually obtained via clustering. More details are presented in the following

section.

2.1.2 Bag-of-Words: An Approach Inspired by Text

Retrieval

The most widely adopted approach for large-scale CBIR borrows successful

concepts from text retrieval. An overview of the bag-of-words (BoW) scheme

is given in Figure 2.3. First proposed by Sivic and Zisserman [114], the BoW

method treats every image in a database as a collection of visual words. While

in text retrieval a dictionary of words is already defined, in CBIR the visual

words concept is harder to standardize. A dictionary of visual words should

be created from the available images. A clustering algorithm is required to

group the feature vectors of all the images in a database, so as to create

a codebook of visual words. The generation of a reliable codebook is an

open-ended problem due to the huge variation of visual information and the

high-dimensional nature of the feature vectors. In [114] a simple k-means
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Figure 2.3: Overview of the bag-of-words scheme.

clustering algorithm was employed to form the codebook, which is efficient but

difficult to scale to large image collections. On top of that, a larger database

requires a richer dictionary to represent all the possible variations. To address

this problem, Philbin et al. [100] compared different scalable methods for

building a vocabulary and introduced a novel quantization method based on

randomized trees. Instead of solving a large clustering problem they reduce

complexity by solving many smaller problems. K-means is the most common

approach, yet mean-shift [65] and hierarchical k-means [95] algorithms have

also been studied in literature. Recently, research focused on finding more

discriminative codebooks [131, 135].

To ease the discussion, let us suppose that a dictionary of visual words

has been successfully generated. Every image is represented by an ensem-

ble of local feature vectors. Subsequently, quantization of the vectors (i.e.

assignment to the most similar codebook entry) will create an image repre-

sentation based on visual words, hence the name bag-of-words (BoW). From

the BoW representation a histogram of visual word frequency for each im-

age will be generated. Note that the dimensionality of the word frequency

vector equals the number of the words in the visual codebook, therefore this

parameter plays an important role in the overall performance and it is often
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tuned empirically. The formation of the document-word vector is often built

according to a weighting scheme, because not every word in the codebook is

equally important. The standard weighting technique, frequently used in text

retrieval, is the tf-idf scheme [104]. It is a statistical measure used to evaluate

how important a word is to a document in a given collection or corpus. It is

computed as follows: suppose there is a vocabulary of m words, then each im-

age Ij is represented by a histogram vector h = [w1, w2, . . . , wm]T of weighted

word frequencies with component:

wi =
nij
nd

log
D

Di

(2.1)

where nij is the number of occurrences of visual-word wi in image Ij, nd is

the total number of words in image Id. Di is the number of documents con-

taining the term wi and D is the number of images in the whole database.

This weighting is product of two terms: the visual-word frequency
nij

nd
and the

inverse document frequency log D
Di

. Tf-idf tends to filter out common terms.

The weight value will always be greater than or equal to zero. Intuitively,

this calculation determines how relevant a given word is in a particular docu-

ment. Word frequency assigns higher weights to words occurring more often

in a particular document and thus describes it well, while inverse document

frequency lower the importance of words that appear often in the collection

or corpus and therefore do not help in discriminating between different doc-

uments. Additionally, the resulting vector is sparse and this property can be

exploited to speed up the retrieval process.

To measure the similarity between two image tf-idf weighted representa-

tions hj = [w
(j)
1 , w

(j)
2 , . . . , w

(j)
m ]T , j = {1, 2}, the cosine angle distance between

their term frequency vectors wi is ordinary used:

cos(h1,h2) =
h1 · h2

‖h1‖ ‖h2‖
(2.2)

The cosine angle similarity can be seen as a method to normalize document

length during evaluation. The resulting similarity ranges from 0 meaning ex-

actly opposite, to 1 meaning exactly the same. In-between values indicate

intermediate similarity or dissimilarity. Relevant results are ranked according

to the cosine similarity between the query and all the images in the database.
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Obviously, when the database size grows, the query time and memory require-

ments are increasing as well, so instead of linearly scanning through all the

images we can perform speed-up optimizations like using an inverted index of

visual words or organize hierarchically the term frequency vectors.

2.1.3 Similarity Measurement

The selection of the appropriate metric to compare visual signatures consists

the second fundamental problem of CBIR. The type of signature created by

the feature extraction algorithm determines the choice of similarity evaluation

to be followed. In the previous chapter three types of visual signatures were

explained:

• a global feature vector

• a set of block-based feature vectors

• a summary of feature vectors generated by quantized local features

For each type we will describe the popular distances in literature.

When we are dealing with vector data there is a vast range of similar-

ity measures. The Minkowski distance family, which includes the Euclidean

and the Manhattan distances, constitutes a well-defined choice. It can be

computed fast and works well in most cases, but it suffers from the curse of

dimensionality [38]. One approach to tackle this issue is to search for a non-

linear manifold in which the feature vectors lie, and to replace the Euclidean

distance with the geodesic distance [121]. The assumption here is that human

visual perception is described better within a non-linear subspace than in the

original linear space. Computation of similarity may then be more appropriate

if performed non-linearly along the manifold. The geodesic distance between

two points A and B is approximated as the shortest path from vertex VA to

vertex VB in a graph G and offers invariance to non-rigid transformations such

as bend or shear.

The technical emphasis on block-based signature similarity rests on the def-

inition of a distance between sets of vectors, which differs from the traditional

single-vector functions. The Hausdorff distance could be employed for this

purpose and has been applied to CBIR by Ko and Byun [67]. First, consider
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Table 2.1: Popular distance metrics for image similarity.

Distance
measure

Input Computation

Minkowski
distance

x,y ∈ Rn

(vectors)
(
n∑
i=1

(xi − yi)
p)

1
p

Hausdorff
distance

{x1, . . . ,xp}
{y1, . . . ,y1}
(vector sets)

max(max
i

min
j
d(xi,yj),max

j
min
i
d(xj,yi))

KL diver-
gence

A,B ∈ Rn

(histograms)

∑
i

A(i)A(i)
B(i)

Histogram
intersec-
tion

A,B ∈ Rn

(histograms)

n∑
i=1

min(A(i), B(i))

χ2 distance
A,B ∈ Rn

(histograms)

n∑
i=1

(A(i)−B(i))2

A(i)+B(i)

an image signature in the form of a set of feature vectors {x1, x2, . . . , xn}. Let

us denote two signatures by Im = {x(m)
1 ,x

(m)
2 , . . . ,x

(m)
n },m = 1, 2. In Haus-

dorff distance every x
(1)
i is matched to its closest vector in I2, say x

(2)
j based

on a d(·) metric, usually the Euclidean distance. The dissimilarity between I1

and I2 is then defined as the maximum among all the matched pairs. Haus-

dorff distance is made symmetric by additionally computing the distance with

role of I1 and I2 reversed and choosing the larger of the two distances. The

formal definition of the Hausdorff distance between two finite sets is:

DH(I1, I2) = max(max
i

min
j
d(x

(1)
i ,x

(2)
j ),max

j
min
i
d(x

(1)
j ,x

(2)
i )) (2.3)

Similarity between quantized feature vectors ordinary follows text retrieval

evaluation measures, for instance the cosine distance. Due to the signature

vector being often a histogram representation of the feature codebook, the

Histogram Intersection distance (HI) or χ2 distance could also offer improved

performance. Moreover, representations based on probabilistic models can be

measured by the Kullback-Leibler (KL) divergence [70]. The KL divergence,

also known as the relative entropy, is an asymmetric information-theoretic

measure of the difference between two distributions f (·) and g(·), its mathe-

matical formulation is available in Table 2.1.
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The different distance measures discussed so far have their own advantages

and disadvantages. While simple methods lead to very efficient computation,

which in turn makes image ranking scalable, a quality that greatly benefits

real-time applications, they have limited efficiency on noisy data. Depending

on the specific application and the nature of image signature, a very important

step in the design of an image retrieval system is the choice of a distance

metric.

2.1.4 Evaluation Techniques

Performance evaluation of content based image retrieval systems is a cum-

bersome task, mostly due to the subjective interpretation of the quality of

the retrieved images. A typical CBIR evaluation system consists of three

components:

• A benchmark dataset that ideally contains images covering a large range

of semantics and is large enough for the evaluation to be statistically

important.

• A ground truth for the provided dataset. Ground truth is subjective

because it is established by humans.

• A metric for evaluation. The metric should try to model user require-

ments.

The design of an evaluation system is a cumbersome procedure. Images should

frequently be handpicked to ensure the coverage of a broad range of semantics

topics. Moreover, ground truth should be gathered from a considerable large

number of observers to reduce bias. Deciding on metric and evaluation criteria

is another difficult problem. CBIR technology is expected to satisfy the needs

of people who use it, hence a fair objective evaluation should comply with

user expectations.

Evaluation metrics have been adopted from information retrieval theory,

as intrinsically CBIR constitutes an information retrieval problem. The most

popular metrics used are summarized below:
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• Precision: The fraction of the images retrieved that are relevant to the

query.

P =
#(relevant items retrieved)

#(retrieved items)
(2.4)

• Recall : the fraction of the images that are relevant to the query that are

successfully retrieved.

R =
#(relevant items retrieved)

#(relevant items)
(2.5)

Precision and recall are inversely related. Precision falls as the number

of retrieved images is augmented, while recall increases. Typically, results

are depicted as precision-recall curves. The F-measure is the harmonic mean

of precision and recall can also be used to obtain a unified indication of the

performance. The balanced F-measure is defined as:

Fm = 2 · precision · recall

precision + recall
(2.6)

The above are single-value metrics based on the whole list of documents

returned by the system. For systems that return a ranked sequence of images,

as in CBIR, it is desirable to also consider the order in which the returned

documents are presented. Average Precision (AP) emphasizes ranking rele-

vant documents higher. It is the average of precision measurements evaluated

at the position of each of the relevant documents in the ranked sequence:

AP =

N∑
r=i

P (r)rel(r)

Dr

(2.7)

where r is the rank of the current document in the returned image set. N is

the number of retrieved documents, rel() is a binary function on the relevance

of a given rank. P (r) and Dr are respectively the precision and the number of

relevant documents at the given cut-off rank . The Mean Average Precision

(MAP) for a set of queries is used as evaluation measurement for popular
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CBIR benchmarks like TRECVID [97]

MAP =
1

Q

Q∑
q=i

AP (q) (2.8)

Q is the number of queries in the benchmark. The system that holds the

higher MAP on a benchmark database is considered as the state-of-the-art

in the specialization area defined by the benchmark (e.g. shape databases,

portrait databases etc.).

2.2 Sketch Based Image Retrieval

2.2.1 Appearance Features

The particular nature of SBIR renders some of the most popular feature detec-

tors and descriptors inappropriate for providing a robust visual signature. As

previously discussed, shape and structure are the only meaningful appearance

based modalities to capture dissimilarities between binary sketches and edge

maps extracted from images. In this section, we will briefly overview shape

descriptors that can been applied to SBIR.

Appearance based descriptors extract information from local image patches

at points of high saliency. Interesting points detectors use a range of filters

to locate such points in an image. The applicability of these filters to binary

images is limited due to the inherited singularities. In sketches and edge maps,

edge pixels designate the set of interesting points. They are a sparse subset of

all the image pixels and are available without the need of extra computation.

SBIR applications commonly extract image descriptors on edge points or on

a densely sampled grid.

Histogram of Oriented Gradient (HOG) descriptors capture the orientation

distribution of edges. From an image I the gradient ∇I = G is computed.

From G, the gradient magnitude M and orientation O can be derived. Note

that in SBIR the orientation is represented in the range [0, π) as the direction

is not a discriminant property. At pixel position p = [x, y] the gradient

magnitude is defined as mp and the orientation as op. The orientation matrix

is subsequently quantized into r channels. The r-th quantized orientation
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channel can be written as O(r). In a local neighborhood N = {p1,p2, . . . ,pk}
the orientation distribution at bin k is defined as:

hHOG(k) =
∑
p∈N

∑
op∈O(k)

mp (2.9)

The description vector h = [h1, h2, . . . , h2]
T is formed from the r histogram

bins. Usually the local neighborhoodN is further divided into n×n blocks and

a histogram is acquired for each block. The final descriptor is a concatenation

of the individual block histograms. A subsequent normalization step assures

that the number of edges in each image will not bias the description.

The structure tensor [41] has been especially designed for sketch descrip-

tion. It follows the foundations of HOG, yet instead of measuring the distri-

bution of edge orientation in each block the structure tensor of the region is

returned. Under this scheme the main edge orientations are captured. The

structure tensor for a neighborhood N is:

T (N ) =
∑
p∈N

gpg
T
p (2.10)

where gp is the gradient vector at pixel p. Each tensor is normalized with its

Frobenius norm.

Shape context [9] express the configuration of a shape relative to a reference

point. For a point pi a histogram of distances against the remaining points is

calculated. More precisely:

hshape context
i (k) = #{q 6= pi : (q− pi) ∈ bin(k)} (2.11)

This descriptor offers translation, rotation and scale invariance and has been

widely used in shape matching.

The motivation behind self-similarity descriptor (SSD) [110] is related to

that of shape context. A local internal image similarity is computed at each

pixel. A compact descriptor is formed with correlation scores between a small

image patch centered at pixel p and a larger image region surrounding the

patch. The ensemble of descriptors can be coded in a bag-of-features scheme

for retrieval.
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Other descriptors focus on analyzing statistical properties of the edgel con-

figuration and avoid the use of orientation distributions. Popular approaches

are Fourier analysis [140] and Zernike moments [73]. These transformations

are applied directly to the pixels and provide invariant descriptions. The

amount of detail of the description can be regulated by modifying function

coefficients, but more complex representations suffer from numerical instabil-

ity.

Contour based descriptions are also encountered in the literature. Ferrari

et al. [44] presented a local scale invariant shape descriptor formed from

groups of adjacent contour segments. In this work, image contour segments

abiding to Gestalt principles are merged into groups. Each group is described

by a set of distinctive geometrical properties. The group ensembles can be

used for image matching or can be further coded into a bag-of-feature vector

for retrieval

Local Binary Patterns (LBP) [96] implement a pixel comparison mech-

anism in local neighborhoods and have been successfully applied to texture

recognition [53]. Recently, it has further been determined that when LBP

is combined with the HOG it improves human figure detection performance

considerably on some datasets [128]. The BRIEF descriptor [16] operates on

the same pixel comparison principle. Pre-smoothing local patches reduces

noise sensitivity. The produced descriptors are compact binary patch repre-

sentations and can be used in conjunction with the Hamming distance for fast

retrieval. Jegou et al. [62] proposed the VLAD compact descriptor for very

large datasets. VLAD features are formed by the residuals between a local

patch SIFT descriptor and a pre-computed codebook. The residuals undergo

a normalization process [8] that produces a compact, discriminative vector

representation of an image.

The list of appearance descriptors can grow longer, but the above sum-

marize the most popular approaches in literature. Quantitative evaluation of

the performance of these descriptors in SBIR has been attempted in several

studies [42, 56, 55, 41]. Across all studies HOG-like descriptors consistently

achieve superior performance, in many cases by large margins. Evidently,

the histogram representation of edge orientations is tolerant to noise and can

produce robust visual signatures tailored for sketch retrieval.
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2.2.2 Gestalt Principles

Gestalt is a psychology term which means ‘unified whole’ [6, 68]. It refers

to theories of visual perception developed by German psychologists in the

1920s. These theories attempt to describe how people tend to organize visual

elements into groups or unified wholes when certain principles are applied.

These principles are:

• Figure-ground relationship: We group elements as either figures (distinct

elements of focus) or ground (the background or landscape on which the

figures rest).

• Proximity : We perceive objects that are close to each other as forming

a group

• Similarity : We group similar to each other elements together

• Symmetry : We perceive objects as being symmetrical and forming around

a center point.

• Continuity : WE group elements together if they are aligned within an

object.

• Closure: We perceive shapes that are not completely there. Specifically,

when parts of a whole picture are missing, our perception fills in the

visual gap.

Gestalt theory has been applied in several domains, especially in user-

interface design [22]. Computer vision research has also been influenced by the

perceptual organization principles [98, 132, 139]. Detecting Gestalt principles

in images is a computational expensive task, as a result it has not been widely

researched from an image description perspective. Recent work from Bileschi

and Wolf [11] demonstrated recognition improvements over the state-of-the-

art results, against the HOG descriptors, by encoding a selected subset of the

Gestalt principles. Hand-drawn sketches display symmetries. In Chapter 5, we

investigate how this observation can be exploited to boost sketch recognition.
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Figure 2.4: Stroke matching applied to hand-drawn pictorial queries. Figure
from Lopresti et al. [81].

2.2.3 Early Approaches

Probably the proposal of a SBIR system was Chang and King-Sun [23] paper

in 1979. They proposed a query language for image retrieval that can process

both pictures and sketch inputs. Sketches formulated by indicating lines or

regions of interest in an image and authors calculated simple features for each

entry such as the length of a line, perimeter, area etc. Users could perform

queries to the database to retrieve images based on a property, like two shapes

that share the same center.

Hirata et al. [54] performed visual search in 205 digitized oil-paintings.

Each database image was first rescaled to a predefined regular size and then

edges were extracted for each painting. The query consisted of a rough sketch

illustration of a database painting. Images were normalized in size and sub-

divided into 8× 8 local blocks. For each local block, the best local correlation

was computed by searching in a small window of local blocks. The global

similarity was then defined as the sum of the local correlation values. This

method benefits from translation and local deformation invariance, but is slow

due to the matching process where each block should be compared with all

the corresponding blocks in the database.
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Figure 2.5: A colored sketch query as used in [60].

Lopresti and Tomkins [81] addressed the problem of recognition both for

handwritten text and drawings. They took advantage of the inherently se-

quential nature of drawing in the temporal domain. They segmented a digital

pen’s input into strokes and a standard set of features was then extracted

for each stroke, e.g. stroke length, total angle traversed. The generated vec-

tors were clustered in a small dictionary of basic stroke types. Similarity

between images was computed by matching segments that had been drawn

approximately in the same order; see Figure 2.4 for an overview. This ap-

proach works well in handwritten text recognition where the stroke order is

well defined, i.e. when users start writing the first letter and then proceed

sequentially. It struggles with pictorial queries due to the arbitrary order of

the strokes. For instance, consider the example displayed in Figure 2.4. In

Picture B we cannot define whether the tree, the car or the house has been

drawn first.

An early attempt for scalable SBIR appeared in the Jacobs et al. [60]

paper in 1995. A database of 20,000 images have been employed and consid-

ering the computational power and digital media availability in 90’s, it could

be accredited as a large database for that time. The authors introduced a

colored sketch as the input query of Figure 2.5, which can be painted by the

user. In every image a Discrete Wavelet Transform (DWT) is applied which is

fast to compute. DWT requires little storage space because just a small set of
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high magnitude coefficients contain most of the visual information, hence the

majority of weak coefficients can be discarded. Haar wavelets had been chosen

as the core filtering unit and offer simple implementation and efficient compu-

tation. In addition, user-painted queries tend to have large constant-colored

regions, which are well represented by this basis. On top of the truncation of

the coefficients, two-level quantization is employed. Positive coefficients are

mapped to +1 and negative to -1. Finally, a fast metric was introduced to

compare the coefficients between two images and return a similarity value.

The method provides adequate retrieval results, but suffers from recall prob-

lems. The number of false positives raises as the volume of database images

increases. Moreover, the use of colored sketches adds complexity to the query

generation process making the system less user friendly.

Jain et al. [61] presented a fusion approach with color and shape character-

istics combined together. Color was represented by three 16-bin histograms,

one for each of the RGB channels, and shape modeled by a histogram of 36

main edge orientations. Similarity was measured as a linear combination of

color and shape histogram distances. The authors managed to retrieve 99%

of times the given query in the first two positions from a 400 trademark image

database.

Del Bimbo et al. [37] presented a technique which is based on elastic

matching of sketch templates over the shapes in images. The amount of strain

and bend energy spent deforming the template was employed to derive a mea-

sure of similarity between the sketches and the images. This scheme provides

translation invariance. The authors also provide solutions to handle scale vari-

ances and spatial relationships between objects in multi-object queries. The

method was applied to a pool of 100 images and in spite of its success to that

particular database it cannot be employed on larger scale with conventional

hardware, due to the cost of computing the elastic deformation between the

query and every picture. The matching is also sensitive to rotation transfor-

mations.

During the 90’s the Curvature Scale Space (CSS) [91] theory was quite

popular and had been successfully applied to many shape recognition tasks.

Consequently, SBIR approaches based on CSS foundations were also studied

[90]. The main idea of CSS is to represent curves at various scales, so that each



2.2. Sketch Based Image Retrieval 30

Figure 2.6: Elastic deformation of a sketch to match a shape. Figure from
[37].

structure can be represented at its appropriate scale. A curve is parametrized

by its arc length and successive convolutions with a Gaussian kernel approxi-

mate the scale space. In [90], Matusiak et al. evaluated a distance metric on

the maxima of the CSS function of two images and use this metric to rank 800

database images. CSS is sensitive to shallow an deep concavities of a shape

and therefore not well suited for hand-drawn sketch description.

2.2.4 Recent Approaches

As hardware technology progressed, computers have benefited from a great rise

in computational power and memory capacity. Nowadays, personal computers

possess processing power several magnitudes higher than machines in the 90’s.

Therefore, SBIR has entered a new era in which raw computational power

is much more affordable and available. Along with the demand for robust

sketch/image matching a new requirement emerged; fast query responses on

large image databases.

In 2005 Chalechale et al. [21] performed angular partition in the spatial

domain of images, as a means to extract compact and effective features. The

first step of the process is to obtain the edge map of all the natural images,

in order to transform them in a format more suitable for matching against

binary sketches. Sketch queries were preprocessed by a morphological thinning

filter to better match the edge maps extracted from the images. An angular

partition of an image is employed and divides images in K angular regions.
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K can be adjusted to achieve hierarchical coarse to fine representations. The

number of edge points for each region Ri, i = {1, 2, . . . , K} is chosen to

represent each slice feature. An 1-D Discrete Fourier Transform (DFT) is

then computed for each region of the image and by keeping only the magnitude

of the DFT, scale and rotation invariance is guaranteed. Authors also note

that this scheme provides robustness against translation as well. Similarity

between images and sketches is measured by the l1 distance between the two

feature vectors. This system was tested on a database of 3,600 images. At

least 13% percent of the images had to be recovered from the database in

order to retrieve the correct image, a fact that highlights the noise sensitivity

of DFT.

The work of Liang et al. [75] was published the same year, but follows

a different approach. Each sketch query is decomposed into basic geomet-

ric primitives by using the pen’s speed and curvature, properties frequently

used in handwriting recognition [101]. These strokes are later organized into

a topological graph according to their spatial relations. In total, eight spatial

relations were selected to accommodate scale, translation and rotation invari-

ance. A graph is formed as follows: every vertex is represented by a stroke

and an edge can be established between two nodes if and only if there is a

spatial relation among the strokes. To enable topological graph comparison,

a vector representation is required, hence the graph spectrum is calculated.

The graph spectrum is the set of eigenvalues of the adjacency matrix of the

graph. An issue here is that for different sketches with different number of

primitive shapes, the dimensionality of the spectrum descriptors will vary. Di-

mensionality reduction is performed to remedy this imbalance. The Euclidean

distance between two feature vectors was adopted as a similarity measure in

this work. Authors propose a relevance feedback module that in conjunction

with the retrieval system will improve query results. The main drawback of

this algorithm is that the authors included only a database of sketches with-

out including natural images to evaluate the system. Hence it is not known

whether the algorithm can be applied to natural images. Segmentation of

free-hand sketches have been studied with some success [119], yet geometric

primitive extraction from natural images is a much more complex problem.

Hu et al. [55, 56] proposed a descriptor specialized for SBIR, the Gradi-
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ent Field HoG (GF-HOG), which encapsulates local spatial structures in the

sketch and facilitates retrieval based on a dictionary of visual words. Instead

of calculating a shape descriptor in the edge map domain, image structure

is represented using a dense gradient field interpolated on the sparse set of

edge pixels. The interpolation is performed by solving Poisson’s equation with

Dirichlet boundary conditions. The well-known HOG [34] descriptor is then

employed for every edgel in the interpolated space, at several scales, to ex-

port the final descriptor set for an image. Finally, the BoW coding scheme

is adopted to enable queries in a database. In [56], an extensive evaluation

on several image descriptors is carried out indicating the superiority of HOG-

like features in SBIR. The authors, also made publicly available two SBIR

databases, namely Flickr160 and Flickr15k. Section 2.2.6 provides more de-

tails on them. Our work in SBIR, presented in Chapter 3, outperforms GF-

HOG and to our best knowledge tops the state-of-the-art on both datasets.

Eitz et al. [40] were the first to propose a SBIR method that can scale to

large datasets. Indeed, they demonstrated their approach with an image col-

lection of 1.5 million images from Flickr. They employed a block-based tensor

descriptor, named Structural HOG (SHOG). Each image was first transformed

to an edge map and edgels with magnitude less than a threshold were removed

in order to eliminate responses from image areas with uniform intensity or

color transitions. A fixed grid was then applied to the image and for each cell

a structure-tensor descriptor computed based on the gradients of the edgels in

the current block. This descriptor is similar to the edge histogram descriptor

(EHD) [113], but instead of quantizing orientations into bins, it gives infor-

mation about the main orientation of gradients in a block. In order to detect

similarly oriented image edges, independent of the magnitude of the edges,

every structure-tensor is normalized with its Frobenius norm. The Frobenius

norm is suitable to normalize matrices and that is the reason it was selected.

The process is visualized in Figure 2.7. Each image cell was represented by an

ellipse with axes being formed by the eigenvectors of the structure tensor. The

dissimilarity between two descriptors was defined by summing the structure-

tensor distances of the cells. Cells not represented in the query were excluded

and did not contribute to the metric, in order to enforce image/sketch spatial

matching. A linear search in the database took between 0.4 and 3.5 seconds.
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Figure 2.7: Illustration of the tensor descriptor for each image cell. Figure
from [42].

A recent study [56] showed that the SHOG block-based approach does not pro-

vide robust results if compared against bag-of-features approaches. In a later

review, the authors suggested a bag-of-features variant of [42], that overcomes

some of its weaknesses. Our research presented in Chapter 3 demonstrates

superior results over both SHOG methods.

Min Yoon [137] suggested a similar descriptor to SHOG. In this approach,

rather than calculating a structure-tensor for every image cell, a tensor is

computed for the local neighborhood of each edgel and the eigenvalues of each

tensor are stored. The similarity metric is evaluated on the ensembles of two

images. It is not known how efficiently this approach scales to large databases,

since there is no mention of it in the paper. The method was applied to a

pool of 600 images, a size inadequate to draw conclusions on scalability.

A structure similarity approach has been studied in [103]. Structure infor-

mation is extracted from sketches and image edges in the form of key-shapes.
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Key-shapes are collections of stroke primitives, like arcs, lines or ellipses. Each

key-shape can be described by the distribution of the stroke primitives it en-

compasses in its neighborhood as well as by the orientation distribution in

the same area. An ensemble matching approach based on the Hungarian

Method [69] is employed to generate image rankings. This approach, only if

combined with a bag-of-features descriptor, presents some promising results

but the cubic complexity of the matching renders it inappropriate for large

size databases. To give a feeling for scalability, authors state that each im-

age/sketch pair is matched in 8ms. For a database of 100,000 images a sketch

query will require a little more than 13 minutes to be completed.

Recently, the Oriented Chamfer Matching (OCM) distance has been ap-

plied to sketch/image matching [18, 118]. In its original form, OCM requires

high computational and storage costs. In [18], an approximation of the OCM

was introduced based on the Distance Transform (DT). Each edge image, post

edge extraction, is divided in k orientation parts. For each part an inverted

index structure is generated from its DT and stored into the memory. At

the query stage, a look-up on the inverted index is performed for each sketch

edgel. Under this scheme 2.1 million images are indexed in 6.5GB of memory.

In [118], further optimizations were suggested to enable search in a 2-billion-

image database. Here, the OCM is approximated by the dot product between

the sketches edge map and the images DT. To achieve that, the original DT

and edge map matrices are vectorized and subsequently projected in a lower

dimensional space via PCA. A hashing framework further reduces the com-

putational and storage requirements. These methods yield a highly scalable

scheme, yet the quality of the retrieval results is questionable as evaluation

on popular SBIR databases is not provided.

2.2.5 Hybrid Systems

This section covers methods that do not strictly use only appearance based

cues to retrieve images. These systems retrieve a big volume of images using

a text query, in an attempt to bridge the semantic gap, and then try to prune

irrelevant results based on visual constraints. Optionally, some implementa-

tions provide the user the possibility to seamlessly collage several retrieved

objects together to construct an image that better matches their needs.
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Sketch2Photo [25] composes a realistic picture from a simple free-hand

sketch annotated with text labels. A web search is performed based on the

text labels attached to each of the drawings and an initial volume of images is

returned. Since text image search generates lots of inappropriate results, the

authors suggest a filtering scheme which gives a small set of images that match

the depicted sketch. The goal of this system is to combine several retrieved

images to create a new picture that meets the user’s needs. This is achieved by

providing the user with a set of background and scene images to select from.

Subsequently, the user chooses a background image and objects from the scene

images and stitch them together. Therefore, the filtering process consists of

two separate functions: a) background image selection; b) object image selec-

tion. The background image is selected to be consistent with the query label

and to be uncluttered for the composition to be performed. The consistency

criteria are met by assuming that the majority of the returned images will be

consistent to the text label, so a clustering in the LUV color domain is applied

and few images closer to the largest cluster centroid are picked. Images with

uniform regions are chosen by counting the number of segments they include,

because pictures with few segments are more likely to be uniform. The process

continues with the scene item image classification. Regions containing objects

of interest are retrieved with a saliency measurement algorithm, so images

with low saliency scores are pruned. The remaining candidates, after extract-

ing their contours, are matched based on their shape with the corresponding

sketched silhouettes. The images that have not been eliminated during this

process are presented to the user. Obviously, Sketch2Photo cannot be applied

to large-scale retrieval due to the computational demands of its filtering sys-

tem, and was not implemented for this purpose. Still, it produced interesting

results and provided an interactive query component.

Liu et al. [78] conceived an interface to incorporate episodic memory

for specific image retrieval. Specific images refer to images one has certain

episodic memory about, e.g. a picture one has seen before. Episodic memory

is the memory of autobiographical events that can be explicitly stated. They

propose an interactive query-generating process that allows users to specify

the semantic category and rough area/color of the objects. Let us assume the

user imagines a sea landscape with a boat in the foreground, as in Figure 2.8.
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Figure 2.8: Semantic sketch query formulation as defined in [78].

The user draws the main objects in the canvas in the appropriate location and

color and gives each one a text label. This method requires a pre-annotated

dataset that additionally includes object in bounding boxes. Obviously, this

poses limitations on the diversity of the queries that can be represented and

includes the additional effort to manually annotate and detect objects in the

pictures. When a new query occurs the system samples the reference database

and retrieves object exemplars for each entity in the query, e.g. sky, tree. The

authors propose a robust sampling method to deal with label noise. The

method selects multiple object exemplars from the reference dataset to rep-

resent one missing sketched target object. Images are then matched against

possible object exemplar combinations with a parallel local matching algo-

rithm. For every exemplar a color SIFT descriptor is calculated. Following

the bag-of-features approach, a histogram of words is generated based on the

local descriptor for every image. The histogram similarity between the im-

age and each exemplar is computed and the maximum matching score over

all exemplar combinations is used to rank an image. Meanwhile, a spatial

re-ranking algorithm is derived to offset inaccuracies from user sketches. The

spatial re-ranking algorithm selects the best response in a set of local bounding

boxes by a branch-and-bound procedure on multiple object exemplars simul-

taneously. Fianlly, ranked object retrieval results are combined to produce

the final ranking. This work highlights that episodic memory is very helpful

in retrieving the target image, given an interactive SBIR system that will help
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users express their thoughts.

MindFinder [19] encourages users to attach text labels to a hand drawn

sketch and define the dominant color cues of the desired images. First, a

pool of similar images based on the query is collected from the database using

the work in [18]. Consequently, these images are filtered to match the user

provided labels and color traits.

Hybrid SBIR systems incorporate semantics by requiring the user to label

their drawn sketch. This contradicts the purpose of SBIR as defined in Chap-

ter 1, which is to provide an alternative retrieval platform for search cases that

cannot be expressed easily with words. It also prevents the query generation

process to be simple and quick. Therefore, we suggest that the appropriate

way to bridge the semantic gap in SBIR, is to divert the sketch recognition

problem to the machine without burdening the user.

2.2.6 Datasets

Evaluating a sketch based image retrieval system is not a trivial task. On top

of the challenges inherited from CBIR, like search for appropriate metrics and

diverse semantics interpretation between users, the abstraction of the sketch

query is added. It is even more difficult to match images and sketches due to

the vague nature of the latter. A sketch can depict shapes or symbols or an

imaginary scene, thus semantic convergence with photographic images is not

always the case. A successful benchmark targeted to large scale SBIR should

fulfill the following requirements.

• Large and diverse image database. Many images are required in order

to measure the response time of a SBIR system; plus, a large database

provides statistical significance and ensures that many semantic concepts

will be represented.

• Objective semantic links between pairs of images and sketches. Images

indicated as similar to a query must be objectively perceived as similar.

On the other hand, images indicated as dissimilar should be objectively

perceived as dissimilar.

• Unambiguous sketch query concepts. Benchmark queries concepts should



2.2. Sketch Based Image Retrieval 38

not be too vague and some rules ought to be specified to users, like

recommending to draw objects that will exist in the database.

• Appropriate metric. Depending on the nature of the benchmark gener-

ation process, a metric that evaluates a SBIR according to how similar

it is to human performance should be conceived.

So far, three publicly available benchmark datasets have been published in

the literature: EitzSBIR dataset [42], Flickr160 [55] and Flickr15k [56]. The

work presented later in this thesis achieves state-of-the-art results in all three

datasets.

2.2.6.1 EitzSBIR

This benchmark was published by Eitz et al. [42] and is based on a controlled

user study of 28 subjects. It consists of 31 hand-drawn sketches, 1,240 images

related to these sketches and 100,000 distractor images. It is also available

online 1. The authors establish sketch/image ratings based on user ratings in a

controlled environment. Generation of input sketches was designed with focus

on shape based retrieval. Users were prompted to avoid too much abstraction

and symbols in their drawings and encouraged to generate sketches depicting

objects or scenes in a way that they would expect to perform well for an image

retrieval system. This process generated 164 sketches. Authors selected the

31 more precise and coherent sketches that reasonably matched a sufficient

number of images in the database. Some of the input sketches are depicted

in Figure 2.9. Each sketch was associated with 40 visually similar images

according to the user rating, for a total of 1,240 images. 100,000 distractor

images were also provided as noise and mixed with the 1,240 images.

The author’s aim was to create a benchmark to quantitatively compare

a machine’s result with respect to the human performance. That is, how

correlated is the ranking produced by a human, in this case the mean score

of all the participants, to that of a computer. Kendall’s tau is a measure of

rank correlation, allowing assessment of the degree of correspondence between

two rankings and defining the significance of this correspondence. Kendall’s

1http://cybertron.cg.tu-berlin.de/eitz/tvcg_benchmark/index.html

http://cybertron.cg.tu-berlin.de/eitz/tvcg_benchmark/index.html
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Figure 2.9: A subset of the sketch queries of EitzSBIR dataset [42].

rank correlation coefficient is computed as the difference between the num-

ber of concordant and discordant pairs in two rankings. Normalization by

the total number of pairs is applied to gain independence of the test size.

Mathematically, Kendall’s tau is defined as: The author’s aim was to cre-

ate a benchmark to quantitatively compare a machine’s result with respect

to the human performance. That is, how correlated is the ranking produced

by a human, in this case the mean score of all the participants, to that of

a computer. Kendall’s tau is a measure of rank correlation, allowing assess-

ment of the degree of correspondence between two rankings and defining the

significance of this correspondence. Kendall’s rank correlation coefficient is

computed as the difference between the number of concordant and discordant

pairs in two rankings. Normalization by the total number of pairs is applied

to gain independence of the test size. Mathematically, Kendall’s tau is defined

as:

τ =
nc − nd

n(n− 1)/2
(2.12)
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Figure 2.10: Five query categories of Flickr160 [55].

where nc denotes the number of concordant pairs and nd the number of dis-

cordant pairs and n is the size of the sample set. The correlation coefficient

τ can take values in the range [−1, 1] with -1 indicating a reversed ranking,

0 indicating that the two rankings are independent and 1 indicating that two

rankings are the same.

During evaluation, researchers should compare the rankings generated

from the 31 sketches to the ground truth, which is set as the average rat-

ing over the 28 participants. Each of those averaged rankings can be seen as

a consensus between the participants. The mean of the 31 correlation values

constitutes the generalized performance estimation of the evaluated method.

2.2.6.2 Flickr160

Flickr1602 [55] is a small SBIR dataset. It consists of the 5 query categories de-

picted in Figure 2.10. For each category 5 hand-drawn sketches are provided,

totaling to 25 sketch queries. Additionally, 32 images similar to each category

are obtained from Flickr, forming a dataset of 160 images. The evaluation

metric suggested in this benchmark is the MAP, defined in Section 2.1.4.

Comparing Flickr160 with EitzSBIR, one can observe that the latter is

more diverse, contains better-quality sketches that cover a greater range of

concepts. Moreover, Flickr160 offers a limited photo collection making scala-

bility measurements unreliable. Flickr160 is useful to acquire an initial picture

of the performance of a SBIR system or perform parameter tuning before eval-

uating it on a more challenging dataset.

2http://personal.ee.surrey.ac.uk/Personal/R.Hu/ICIP.html

http://personal.ee.surrey.ac.uk/Personal/R.Hu/ICIP.html
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Figure 2.11: Some sketch queries from Flickr15k dataset [56].

2.2.6.3 Flickr15k

Flickr15k3 [56] can be seen as an expansion of the Flickr160 dataset. In this

study, 10 subjects generated a sketch query collection for 33 topics, describing

shape, landmark buildings, objects and scenes. The total number of sketches

is 330, some of them illustrated in Figure 2.11. For each topic a range of

photographs was collected from Flickr. The dataset includes 14,660 images

including affine transformation and background clutter. Most of the images

are associated with a sketch category. A part of the database does not belong

to any category and serves as noise. The evaluation metric recommended is

the MAP over the set of queries.

Flickr15k is challenging both for query diversity and image variability. It is

adequately large to evaluate scalability and response time. It can be employed

in conjunction with the EitzSBIR dataset for a reliable estimate of a SBIR

system’s performance.

2.3 Sketch Recognition

2.3.1 Methods

Machine understanding of hand-drawn sketches is an open issue and has been

studied since the early days of computer revolution [94]. The advantages of

3http://personal.ee.surrey.ac.uk/Personal/R.Hu/SBIR.html

http://personal.ee.surrey.ac.uk/Personal/R.Hu/SBIR.html
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accurate sketch recognition are obvious: digitization, indexing and fast search

of handwritten notes and diagrams, user drawing assistance, semantics and

much more. Great attention to diagram [109, 49, 7] and face sketch recognition

[129, 66, 141] has been given in the literature. Recently, interest was emerged

on recognition of rough depictions of everyday objects [39, 83, 74].

Diagram recognition techniques typically consist of a segmentation step,

where primitive curves are extracted from an input sketch, and a recognition

step, where the group of segmented curves is categorized to a particular sketch

type or component. In [49, 99] a series of rule-based tests are applied to

contour segments to classify them to basic diagram symbols like arrows or

rectangles. Sezgin and Davis [109] apply a Hidden Markov Model (HMM)

to encode the relationships between strokes and classify them to a set of

predefined classes. SketchREAD [7] employs a hierarchical Bayesian network

on low-level shapes to identify higher-level components of a diagram.

Face sketches are often used in forensics to describe the characteristics of a

suspect. These representations are typically made from an expert drawer and

depict finer information than binary sketches. In [129] Wang et al. suggest

a patch matching technique based on a multi-scale HMM that can synthesize

photos from sketches and sketches from images. To recognize a face mugshot,

all database images are transformed into sketches and the recognition is car-

ried out in the sketch domain. In [141], a projection tree maximizes the

mutual information between photo and sketch patches achieving a joint quan-

tized space. Based on the computed tree, features that allow discriminant

comparison between photos and sketches are derived. Klare et al. [66] adopt

a feature learning approach; combined local features from photos and sketches

are used to learn a discriminant projection where sketch recognition accuracy

is achieved.

The above methods provide solutions for specific domains. A SBIR system

requires a more abstract recognition module that will be able to extract seman-

tics from a hand-drawn sketch and recognize familiar drawn objects and con-

cepts. For this purpose, Eitz et al. [39] collected 20,000 hand-drawn sketches.

In their work, recognition is performed via a bag-of-features approach based

on histograms of oriented gradients. For each image, local features are com-

puted over several overlapping image patches. A codebook is built based on
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the extracted descriptors and each image is represented by a histogram of the

visual words frequency. Classification is achieved with the k-Nearest-Neighbor

(KNN) and Support Vector Machines (SVM) classifiers. Similarly, Ma et al.

[83] calculate a HOG variant on a densely sampled grid of the sketch. Fea-

ture vectors are coded by a hierarchical vocabulary tree and the χ2 distance

is used for evaluation. Li et al. [74] follow an ensemble matching approach.

A score is calculated between pairs of sketches based on correlations of patch

similarity and location. This scheme offer robust recognition results but the

slow matching process prevents scalability.

2.3.2 Datasets

Sketch recognition can be cast as an object recognition problem. The goal is to

correctly predict to which class a given sketch belongs to. To ensure accurate

prediction, a large labeled database of hand drawn sketches is required, where

each sketch category is adequately represented by samples that capture a vast

spectrum of deviations. Furthermore, it is essential that the database includes

many sketch categories, to accommodate a large variety of queries.

2.3.2.1 EitzSKETCH

Currently, there is one available sketch recognition dataset that meets the

above criteria published on 2012 [39]. We name this dataset EitzSKETCH. It

consists of 250 categories with each category represented by 80 sketches. The

categories are based on a taxonomy of a mixed set of the most frequent la-

bels of LabelME dataset [102], the Princeton Shape Benchmark [111] and the

Caltech 256 dataset [48]. The sketches were collected using crowd sourcing,

specifically the Amazon Mechanical Turk. After the initial sketch collection,

a manual data verification process was applied to obtain a dataset of 20,000

sketches. Along with the fully drawn sketches the individual strokes as they

were drawn by each user are provided, thus allowing the exploitation of tem-

poral information. Crowd sourcing was used once more to perform human

classification on the dataset. Participants were presented with a sketch and

they were asked to choose one of the predefined categories they thought it

belong to. Humans recognized on average 73.1% of all sketches correctly, but

great variance over categories was observed.
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The authors provide a baseline method using SVMs that can recognize

56% of all the sketches correctly. Evaluating an algorithm on the dataset is

fairly simple. Following the protocol defined in [39], 3-fold cross-validation

is performed. Data are split in 3 partitions; 2 are used for training and the

remaining for testing, repeating the process 3 times with different test set

each time. Stratified sampling should be used so all the classes are equally

represented in the training set. A sample is classified correctly, if the predicted

label is the same as the ground truth. The mean accuracy over the test set

defines the performance of the evaluated algorithm.

2.4 Conclusions

This chapter reviewed the core aspects of feature extraction and evaluation for

a content based retrieval system. Additionally, a literature review on SBIR

and sketch recognition was presented along with the available datasets for

each task.

Appearance based SBIR techniques follow the simple strategy of local fea-

ture extraction and coding with bag-of-features. While the BoF scheme has

been successful in generic image retrieval and in SBIR, it does not encode

spatial information. That means the position of a local patch in the image is

not taken into consideration. Research towards a spatially-aware SBIR sys-

tem has been limited [40, 18], perhaps due to the positive results of the BoF

approach. Our intuition is that spatial consistency will improve image/sketch

matching, and we study it in Chapter 3.

Another under-explored aspect in SBIR literature is scalability. Most

methods perform experiments on small databases of few hundred images and

omit complexity analysis, or it is clear that they cannot cope with large

amounts of data. Large-scale evaluations have been carried out in [40, 18].

Sub-linear times and parallelizable queries is a key property for a contempo-

rary retrieval system.

As highlighted before, the research field of SBIR is characterized by in-

consistencies in evaluation. Most of the published work uses arbitrary image

datasets and metrics for evaluation, without making them available to the

research community. Hence, a fair comparison cannot be always conducted.
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Our work in SBIR is evaluated, and achieves state-of-the-art performance, in

the online public datasets of Section 2.2.6. Therefore, the validity of our re-

sults is ensured and future reference and comparison against other methods

is made transparent.

Approaches to sketch recognition vary depending on the nature of draw-

ings. The sketching style of each domain dictates the appropriate feature

representation. In a typical SBIR paradigm, an average user possesses mod-

erate to low drawing skill. As a result, drawings of the same object encounter

great variance. From this point of view, the EitzSKETCH dataset provides

an appropriate platform to test the recognition accuracy of an algorithm with

hand-drawn sketches. Current research indicates that a learning approach

combined with a re-ranking step based on sketch matching could offer promis-

ing results. Additional attention should be given to visual properties more

appropriate to sketch description and how they can benefit recognition accu-

racy.
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3.1 Introduction

In this chapter we describe our research in sketch based image retrieval fo-

cusing on image content. The desired outcome is to retrieve all the database

images that are visually similar to a given hand-drawn sketch query. To ex-

pedite the drawing process, input sketches are restricted to simple black and

white contour drawings. A successfully SBIR should handle well image/sketch

matching and allow for scalability.

We tackle these challenges by decomposing a sketch query into several over-

lapping patches and retrieving image patches near-duplicate in terms of shape

using a hashing technique. Contrary to the bag-of-feature approach, which

abstracts out spatial information, our method assumes that users are looking

for images spatially consistent with their query. For instance, if they draw a

sunset scene and the sun has been placed at the top right of the canvas, im-

ages displaying the sun in approximately the same location will be preferred.

Therefore our system is designed to retrieve visually similar images to the

hand-drawn sketches up to small translations. At the core of our retrieval

scheme lies min-hash, a set similarity estimation technique originally applied

to identify duplicate web pages [14] and later modified for near-duplicate im-

age search [27]. Our method differs from [27] where an image is described

by a single set of visual words. Similarly to [72], we extract an ensemble

of local image patches, yet our approach employs different patch description

process and relies on a novel patch voting system to infer a ranking on the

database images. Each patch is represented with a binary version of the HOG

[34] descriptor which allows the utilization of the min-hash algorithm. This

provides a more compact and spatially aware image description. In contrast

with most SBIR techniques that employ the bag-of-features scheme and do

not encode spatial information [42, 55, 56], we incorporate structural informa-

tion in sketch/image matching and demonstrate that it significantly improves

matching quality. Our scheme offers flexibility at query time, since we can

omit patches that have not been filled during drawing. An index structure

facilitates fast queries and online result updating. Instead of indexing each

pixel’s location as in [18], we suggest a more efficient patch based look-up

mechanism. We evaluate the retrieval accuracy and scalability of our frame-

work with three available datasets and demonstrate state-of-the-art results.
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Figure 3.1: General pipeline of the patch hashing framework

Moreover, we examine the effect of affine variations on our framework and

offer complexity analysis.

The rest of this chapter is structured as follows: in Section 3.2 we ex-

perimentally verify the benefits of spatial information in SBIR; Section 3.3

details our patch-hashing SBIR framework. Extensive experimental evalua-

tion is given in Section 3.4 along with complexity analysis of our method in

Section 3.5. Conclusions are presented in Section 3.6.

3.2 Benefits of a Spatially Aware Approach

In this section we verify experimentally our intuition that a strong image/sketch

match goes beyond the bag-of-features (BoF) approach and also involves struc-

tural similarity. A well-defined image/sketch pair needs to correlate in appear-

ance and in spatial configuration. For this purpose, we employ a hierarchical

spatial grid on each image and demonstrate improvement in the retrieval ac-

curacy over the BoF approach in the EitzSBIR dataset.

To represent images and sketches we use the Pyramidal HOG (PHOG)

descriptor [13]. The descriptor is not based on local visual words, but on

a spatial pyramid [15]. The image shape is represented in the form of edge

orientations and magnitude histograms, as in HOG, for several spatial pyramid
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Figure 3.2: PHOG spatial pyramid

levels. The pyramid’s spatial analysis gets finer as the level rises. An example

is illustrated in Figure 3.2. In the first level (l = 0) a histogram of edge

orientations is computed for the whole image. Then in the second level (l =

1) the input image is tiled in each dimension. The procedure continues by

squaring the number of tiles on each axis, thus creating finer spatial grids, until

a top level is reached,. This is a pyramid representation because the number

of points in a cell at one level is simply the sum of those contained in the

four cells it is divided into at the next level. Additionally, the spatial pyramid

is applied to the high resolution image, so there is no scale-space Gaussian

smoothing performed beforehand. Therefore, matching of objects in different

scales is not possible under this scheme, which allows us to focus on the impact

of spatial information in image/sketch matching. Moreover, scale invariance

plays a secondary role in SBIR as look-alike images to drawn sketches are

preferred. The final descriptor is a weighted hierarchical concatenation of the

histograms in each level.

First, the edges are extracted for each database image, thus information

that is not useful in sketch matching is reduced and shape characteristics

are highlighted. Next, the spatial pyramid is applied to each image for L

levels. Typically, L does not exceed 3 because beyond that point the descriptor

becomes too local oriented and cannot cope with spatial variations of different

images. Moreover, as the level of the pyramid grows, the dimensionality and

the time of computation for the descriptor increases in parallel, imposing

further performance barriers.

Since the spatial grid is doubled for each axis from one level to the next, we

can calculate the grid density in each level as
L∑
l=1

4l where l is the current level

and L the total number of levels. For each tile at each level a histogram Hl of

edge orientations is calculated with dimensionality K, which is the number of
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Table 3.1: Evaluation of PHOG in EitzSBIR dataset for several distances.

K = 20 K = 40 K = 60 K = 80

NHI 0.294 0.293 0.295 0.302

x2 0.290 0.292 0.291 0.299

cosine 0.280 0.2653 0.252 0.250

orientation bins and is empirically tuned. In total, the dimensionality of Hl at

level l is K
∑

l∈L 4l. The histograms for each level are concatenated to form

the final feature vector. The PHOG vector is normalized to sum to unity.

Normalization ensures that images with more edges, for example those with

high texture content, are not weighted more than others. An implementation

with K = 20 and L = 3 will result in an 1,700-dimensional vector.

Images I1 and I2 represented by a PHOG descriptor can be matched by

summing the distances between each level histogram hl:

D (I1, I2) = wldl

(
h
(1)
l ,h

(2)
l

)
(3.1)

Where wl is the weight at level l and dl(·, ·) is the distance between I1 and

I2 at pyramid level l. The PHOG descriptor is essentially a histogram, so

recommended distances are the Normalized Histogram Intersection (NHI), the

χ2 distance and the cosine distance. The Euclidean distance is not suitable

to compare histogram dissimilarities. Moreover, instead of weighting equally

each pyramid level, it is better to value higher finer resolution levels than those

at coarser resolution. A weighting scheme where wl = 1/2(L−l) is proposed,

yet depending on the application an empirical weight assignment may provide

improvements. PHOG offers insensitivity to small rotations and a compact

vector representation, due to the statistical description of edge orientations.

Additionally, it benefits from spatial flexibility and is able to capture both

coarse and fine shape similarities.

We evaluate the PHOG performance on the EitzSBIR benchmark, see

Section 2.2.6.1, using a selection of dissimilarity metrics. Table 3.1 summarizes

the results. For all database images, we first perform an edge detection step

and we apply the PHOG descriptors in the edge maps. The PHOG descriptor

is applied directly to the sketch queries.

By introducing the spatial pyramid, we observe a 9% increase from the
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BoF approach of [42], in the EitzSBIR benchmark. PHOG achieves a correla-

tion value of 0.302 when the BoF-SHOG approach scores 0.277. The dataset

encompasses a large range of sketches and images, hence the observed increase

is not negligible. We attribute the performance boost to the encoding of spa-

tial information via the spatial pyramid, as the two schemes use a similar

edge orientation description of patches and are otherwise the same. Correla-

tion values are consistently higher than BOF-SHOG under a large range of

orientation representations (K parameter). The NHI and χ2 distances present

the best performance with the cosine distance following closely. It is evident

that increasing the number of orientations bins to more than 20 does not im-

prove retrieval performance. In some cases, it might even introduce noise as

hand-drawn sketches consist of few major orientations, although we haven’t

observed it in our experiments. A configuration of K = 20 and l = 3 results

to a descriptor of 6.6KBs, if we assume each value is represented by a 4-byte

float. A linear search in the dataset of 100,000 images takes approximate 3.2

seconds. Obviously, indexing and parallelization of the code could improve

this figure, still the NHI and χ2 distances are expensive to calculate.

Having demonstrated the advantages of the structural aware representa-

tions in SBIR, we proceed in the following section to describe a scalable and

robust SBIR framework that will further enhance the state-of-the-art.

3.3 Retrieval Based on Patch Hashing

In this section, we describe how we incorporate the unification of patch loca-

tion and description in a scalable framework for efficient image retrieval. We

retrieve similar images to a sketch query based on accumulated similarities

between local patches. Every image in the database is divided into overlap-

ping squared blocks and for each region an edge orientation distribution is

extracted. A reverse index is built on the unique min-hash values/location

pairs pointing to the patches containing these values. A sketch query under-

goes the same process and for each sketch patch, we look into the index to

retrieve similar patches at nearby locations. Every index hit contributes a vote

to the corresponding image and the final ranking is generated by summing the

votes for each image. Min-hash is employed to estimate the similarity between
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two patches. Chum et al. [27] proposed to represent an image by an unordered

set of visual words acquired by clustering on the feature space. Under this

scheme, an image is represented by a single sequence of 0 and 1. Our approach

adopts a sequence description for every local patch, but instead of utilizing a

visual codebook to derive the sequences, we use the non-zero indexes of the

binarized patch descriptor. An overview of the core modules of our method is

presented in Figure 3.3

3.3.1 Min-Hash Overview

Min-hash is a probabilistic technique that can be used in conjunction with

Local Sensitive Hashing [58] to estimate similarity between sets. Assume a

set S of tokens x of size |S|. The set Si ⊆ S can be represented by a sequence

of size |Si| where the presence of a token x ∈ Si is indicated by 1 and the

absence by 0. The set overlap similarity, or Jaccard similarity, between two

sets S1 and S2 is defined as the ratio of their intersection and union and is a

number between 0 and 1; it is 0 when the two sets are disjoint, 1 when they

are equal, and between 0 and 1 otherwise.

Jaccard Similarity(S1, S2) = sim(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(3.2)

Eq. (3.2) values equally every member of the set. In [27], an extension is

proposed to assign to each set token x a weight according to its importance.

Min-hash approximates the set similarity by creating a random hash function

h : S → R sampled from a uniform distribution, mapping each element of S

to a real number. Each hash function h defines an ordering on the members

of S. Min-hash is defined as the smallest element of S under ordering induced

by h.

min-hash (S, h) = min
x∈S
{h (x)} (3.3)

The outcome of Eq. (3.3) is a real number for each input set. The prob-

ability of two sets having the same min-hash value is equal to their Jaccard

similarity.

P (min-hash (S1, h) = min-hash (S2, h)) =
|S1 ∩ S2|
|S1 ∪ S2|

= sim(S1, S2) (3.4)
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The above holds because h is a function sampled randomly from a uniform

distribution. Therefore each x has the same probability of being the mini-

mum element. If x is drawn randomly from S1 ∪ S2 and min-hash (S1, h) =

min-hash (S2, h), then S1 and S2 have x in common. If the min-hash values

are different then x is not a shared element. An unbiased similarity estimation

is obtained by computing for each set Si, k independent min-hash functions

hk and counting the occurrences of identical min-hash values for the two sets.

To reduce the possibility of false positive retrievals the min-hash values of s

independent hash functions are grouped together to form s-length tuples (of-

ten called sketches). Two sets are characterized similar, if they share at least

one tuple.

The probability of two sets sharing j min-hash tuples out of k is given by

the binomial distribution:

P (min-hash (S1)
j
= min-hash (S2)) =

(
k

j

)
pjs(1− ps)k−j (3.5)

where p = sim(S1, S2), k is the number of min-hash tuples and s is the number

of independent hash functions used to form an s-tuple.

The min-hash tuples can be computed fairly fast (linear in the size of

Si) and given two tuples the resemblance of the corresponding sets can be

computed in linear time in the size of the tuples. The probability of collision

under this scheme is:

P{h(S1) = h(S2)} = 1− (1− sim(S1, S2)
s)k (3.6)

Min-hash has been successfully applied to text [14] and image [27] domains

to detect near-duplicate instances of a given set.

3.3.2 Patch Description

A well-defined patch description will set solid foundations for robust matching.

A patch summary is obtained via a three-step process. First, all images are

subjected to a preprocessing operation. Then, a visual signature is extracted

for each patch. Finally, the descriptors are binarized in order to be hashed.
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Preprocessing. We apply an edge detection filter to each image in the

database. As the feature extraction will take place on the detected edge map,

a human-like contour detection is of paramount importance. We found that

if we keep the image dimensions reasonably small we can benefit from the

excellent performance of the Berkeley BG detector [89] without burdening

much the computational unit. Hence, every image is scaled by keeping the

aspect ratio fixed and setting the largest side to 200 pixels. The rescaling also

speeds up the feature extraction process at the expense of possible slight loss

in retrieval accuracy. Edge detection is carried out via the BG detector in less

than a second. Weak detected contours are further reduced by thresholding

the returned edge map. Depending on the application, we can set the threshold

high to keep only very strong basic lines or lower if more details are required.

In the case of a hand-drawn sketch input, the edge detection step is substituted

with a morphological thinning operation, which reduces thick drawn lines to

single-pixel width. This removes drawing artifacts, such as double edges on

each side of the trace of a line.

Feature Extraction. An overlapping spatial grid is applied to describe the

generated edge map finely and feature vectors are extracted for every patch of

the grid. The grid size and patch size are parameters that need to be tuned

for each dataset. We found that an implementation with grid size equal to

17× 17 and patch size of 40× 40 performs well in the general case. Sketches

contain sparse visual information, therefore local patches usually cover a large

region of the image. These two parameters regulate how densely an image is

sampled, allowing to choose the detail depth of the representation. The patch

extraction process is visualized in the top part of Figure 3.3. Two patches

are considered similar if they share shape characteristics, i.e. their edges have

similar orientation histogram and spatial arrangement. We propose to quan-

tify this similarity with the HOG descriptor, known to perform well in general

object detection problems. Moreover, descriptions relying on histograms of

oriented gradients achieve superior performance in SBIR, according to the

literature [42, 56, 55, 41].

Binarization. Descriptions extracted from the previous process return real

valued histograms. In order to make the descriptor vector compatible for use
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Figure 3.3: Patch retrieval framework overview. (Top) Feature extraction for a
single patch. The HOG descriptor is computed and then a binarization process
is applied to the feature vector. A list of min-hash tuples calculated from the
non-zero descriptor indexes is the final patch representation. (Bottom) The
patch retrieval mechanism. Every image patch is described separately, for
each computed min-hash tuple a look-up in the hash table is performed. We
only allow votes originating from neighboring patches.

with the min-hash algorithm, a binary representation is required. Min-hash

expects a set S as an input. In [27], each image entry is represented by a

set of visual words. This can be formed as a binary vector where a word

presence/absence is indicated by 1/0. We choose to hash individually each

local patch descriptor instead of a global BoF vector. We modify the HOG

vector to abide to this scheme. Without loss of crucial structure orientation

information, we can binarize the descriptor by setting the b% highest orienta-

tion values to 1 and the rest to 0. Parameter b is a scalar in the range [0, 1].

The binarization process is tailored to sketch/image matching as it highlights
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Figure 3.4: Example of the HOG binarization process. The outcome binary
vector if we set the top 30% of the bin values to 1 and the rest to 0 is identical
for the noise-free (Im1) and the noisy image (Im2). Best viewed in color.

the strongest patch orientations corresponding to solid continuous contours,

while eliminating weak responses from noisy edges. A visual example is given

in Figure 3.4. A HOG descriptor with 8 orientation bins is extracted from a

noise-free and a noisy sketch representation of the digit ‘one’. The noisy image

has been chosen to emulate artifacts that are frequently present in sketches,

thus few random strokes were added to the original image. As expected, the

noise-free histogram has three clear peaks corresponding to the three main line

orientations of the digit. On the other hand, the stroke artifacts introduced in

the second image modify the orientation distribution. We observe, after bina-

rization of both histograms by setting the top 30% of their values to 1 and the

rest to 0, that their vectors are identical and accurately maintain the three

dominant orientations of the image, without being affected by the injected

artifacts. As we assess similarity between many local patch pairs there is no

need for elaborate representations. This scheme captures the local structure

of the images and by combining several local patch matches offers rich higher-

level correspondences. Finally, for each binarized descriptor we calculate k

s-tuples of min-hash values which will be used to efficiently retrieve similar

patches.
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3.3.3 Location-Aware Reverse Index

To estimate patch similarities, we employ the min-hash algorithm. The feature

extraction step provides a set of min-hash tuples of length s for each patch.

To assess similarity between images one should count how many common

min-hash values exist between the two patch collections. An appropriate data

structure for this purpose, that allows constant-time look-ups, is a reverse

index hash table.

We would like to encode spatial information into our framework, hence we

introduce spatial constraints in the matching scheme. The idea is to discard

matches between distant image regions. In other words, a successful match

is defined between two patches that are visually similar and approximately

located at nearby image regions. We suggest a location aware reverse index

built on the collection of min-hash tuples extracted from the dataset. A hash

key is defined for each unique min-hash tuples. For each key, we store the

identifier of the image that the current patch originates from, along with the

location of the patch. The entries of the key-index structure are in the form

<image-id,location>. The location information can be capitalized during the

query process by rejecting non adjacent patches.

The probability of min-hash collisions depends on the patch similarity

(Eq. (3.6)). In practice, as the database size grows patch duplicates are more

likely to occur, leading to high probability of hash collisions. This results

to large buckets for each index key and propagates complexity at the query

stage, where the entries of each hash key need to be linearly accessed. As a

consequence, query efficiency can deteriorate drastically. We tackle this issue

by encoding the location information in each key instead of each bucket entry.

An illustration can be found in Figure 3.5. We create an equivalent index

structure, named key-location-index, where the hash key is defined as the pair

<key,location>. As value, we only store the image id. This setup requires

slightly more space to handle the increased hash key pointers but pays off in

time efficiency. In key-location-index, each query accesses far less entries and

also omits the expensive computation of the locality constraint as will see in

the next section.
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Figure 3.5: Two equivalent location-aware indexing structures. The key-index
structure requires less space and more query time. The key-location-index is
more time efficient but requires slightly more space.

3.3.4 Spatial Voting

Images similar to a sketch query are returned based on a voting process (bot-

tom of Figure 3.3). The pipeline of the query step is as follows: given a binary

drawing, features are extracted according to the process illustrated in the fea-

ture extraction paragraph; obviously the edge detection step is omitted. For

every non-empty patch, k min-hash tuples are computed and for each tuple

a look-up in the key-index is performed. If the key is found in the reverse

index, we iterate through the entries and add a vote to the corresponding im-

ages. The locality constraint is enforced by discarding patches located further

than a predefined distance threshold from the current examined patch. This

requires an additional distance evaluation for each examined entry. Evidently,

the proposed key-location-index expedites the voting process. The location

information is embedded in the hash key and a successful look-up in the table

returns, in constant time, all the images that contain visually similar patches

at the same location as the examined patch. Additionally, the buckets con-

tain fewer entries and can be quickly traversed. If there is a need to expand

the spatial search radius, we can simply generate key-location queries for each

patch by fixing the key and inserting nearby location coordinates to check.
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An indexed image T is represented by a collection T of key-location values.

A given key-location value v scores a hit on T if v ∈ T .

hit(v, T ) =

1, if v ∈ T

0, otherwise
(3.7)

Based on Eq. (3.7), the matching score between a query Q and a database

exemplar T is defined as:

score(Q, T ) =
∑
v∈Q

hit(v, T ) (3.8)

where v is a key-location hash value and Q, T collections of key-location

values. The final ranking is generated by assigning a score to each image,

which corresponds to the number of votes it received. The higher the score,

the better the given image matches the query.

The suggested patch based retrieval scheme enhances flexibility since look-

ups take place only for patches that have been drawn by the user, efficiently

reducing query time and facilitating real-time result updating when a new

stroke is drawn. The query routine can be easily parallelized to enhance scal-

ability even further. Patch queries can be executed independently on different

machines and return a partial vote count for every image. An integration pro-

cess will then merge all the votes to generate the final ranking. The flexibility

of spatial constraints can be controlled by the r parameter. Low values enforce

strict structure correspondences, while higher values allow broader matches.

3.3.5 Handling Bias

Bias in patch hashing originates from two sources: a) images with rich con-

tours and b) frequent min-hash tuples. Bias can significantly deteriorate the

performance of a sketch based image retrieval system. Images with many

edges will receive more votes than images with sparse contours and will dom-

inate the rankings. One way to deal with bias is to assign a weight to each

vote. Votes cast to dense images will weight less than votes cast to sparse

images. This scheme adds additional time and space complexity, as there is

need to keep a record of each image’s density factor and perform a weight
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Figure 3.6: Histogram of bucket sizes of the key-location-index built on 100,000
images.

calculation for each vote.

We suggest an alternative way to resolve the bias effect that will further

alleviate the index structure from redundant information. During index con-

struction, we impose each image to be tied uniquely with a min-hash value.

This means that when an image contains two or more patches with the same

min-hash value only one will get indexed. This process efficiently prunes a

large volume of duplicate entries and at the same time reduces the bias ef-

fect. By extracting several hash values for each patch, we ensure that no

patch is under-represented in the index even if some of its min-hash entries

are discarded.

Another source of bias is frequently occurring min-hash tuples. This is the

equivalent of very common words in text retrieval, such as articles or conjunc-

tions. By discarding these values we reduce the noise, thus producing a more

discriminant index. Figure 3.6 illustrates the histogram of the frequency of

hash keys over a database of 100,000 images. We observe a long-tail distribu-

tion. Most of the hash buckets contain a small number of entries. There are

only few buckets with key count, corresponding to frequent patches, and we

can efficiently prune them by applying a predefined cut-off threshold f .
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3.4 Experiments

We evaluate our patch hashing framework on three publicly available SBIR

datasets. We compare our results against the state-of-the-art for each bench-

mark. Table 3.2 summarizes the best results across all databases. We also

examine how various parameters affect retrieval performance. Namely, the

density of the grid size for feature extraction, the binarization threshold b

corresponding to the top b% histogram values and the robustness of patch-

hashing to affine variations. We found that the min-hash parameters k, s

corresponding to k s-tuples for each patch have little effect on the results,

hence we fix them to k = 50 and s = 2 for all the experiments.

3.4.1 Datasets

Flickr160. Flickr160 consists of 160 images and 25 hand-drawn sketches

assigned to 5 categories. For each sketch category there are 32 associated

images in the database. The evaluation metric is the Mean Average Precision

(MAP) over all the queries as computed by the VLFeat library [125]. Note that

we use the MAP score over all queries instead of the interpolated score used

in TRECVID benchmarks [97]. The best performing method in the dataset is

a bag-of-features approach based on the GF-HOG [55] descriptor. We follow

the preprocessing steps of Section 3.3.2. Each image is downscaled and the

BG edge detector is applied with threshold 175. During the key-location index

construction we discard hash keys that occur more than 7,000 times in the

database. At voting stage, for each patch we also look-up neighbor patches

with Manhattan distance less than r = 2 from the original location.

Flickr15k. Flickr15k [56] can be seen as an expansion of the Flickr160

dataset. In this study, 10 non-expert subjects generated a sketch query collec-

tion for 33 topics, describing shape, building landmarks, objects and scenes.

The total number of sketches is 330. For each topic a range of photographs

collected from Flickr. The dataset includes 14,660 images of ranging affine

variations and background clutter. Most of the images are associated with

a sketch category. A part of the database does not belong to any category

and serves as noise. The evaluation metric used in this dataset is the MAP
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Table 3.2: Results comparison on three SBIR datasets. The metric in
Flickr160 and Flickr15k is the MAP, while in EitzSBIR is Kendall’s τ .

Method Flickr160 Flickr15k EitzSBIR

Tensor [41] 0.270 0.07 0.223

BoF SHOG [42] 0.420 0.109 0.277

BoF GF-HOG [55, 56] 0.540 0.122 N/A

Keyshapes [103] N/A N/A 0.289

Keyshapes + SHOG [103] N/A N/A 0.337

PH-HOG 0.590 0.200 0.341

over the set of queries. All sketch queries are translated so their centroid is at

the center of canvas. For the experiments the BG detector threshold is set to

100. We also define the index bias threshold f to 200,000 and the Manhattan

distance threshold r for nearby patch look-up to 4.

EitzSBIR The EitzSBIR benchmark [42] consists of 31 user-drawn sketch

queries outlining objects and scenery. Each sketch query is associated with

40 photos assigned with a value between 1 (similar) and 7 (dissimilar). These

1,240 photos are mixed with 100,000 distractor images. A SBIR algorithm

must generate a ranking of the database images for each query and retrieve

the order of the 40 query-related photos. The Kendall’s correlation is then

calculated between the algorithm’s ranking and the ground truth for a given

query defined in (2.12) The final benchmark score is the average correlation

value across the 31 queries. In this dataset, we set the thresholds for BG

detector, index bias and voting distance to 10, f = 300, 000 and r = 2 respec-

tively.

3.4.2 Descriptors

Along with the HOG descriptor, we study the impact of two other patch

descriptors. Our scheme requires binary vectors as input to the min-hash al-

gorithm, therefore we choose the BRIEF descriptor [16], which is inherently

binary, and the LBP descriptor [96] with a binarization step. In the experi-

ments, we use our own implementation of the BRIEF descriptor and a public
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implementation of the LBP 1. In the BRIEF descriptor, image patches are

smoothed with a 9 × 9 Gaussian kernel with 0.5 variance and 512 normally

distributed intensity tests form the final description vector. LBP is employed

with the default implementation parameters resulting in a 256-dimensional

vector. We compute the HOG features as described in the original paper [34]

using an online available implementation 2. We apply a 8×8 cell grid for each

patch and in each cell we compute 8 orientation bins in the range [0, π). The

final HOG descriptor for each patch is a 512-dimensional vector. In the rest of

this section, we denote as PH-HOG, PH-BRIEF, PH-LBP the patch hashing

methods with the corresponding descriptors. All descriptors are calculated in

a 40× 40 pixels image region.

3.4.3 Vector Binarization

We test the impact of vector binarization in the Flickr160 dataset. We fix the

spatial grid to 12×12 and apply a range of binarization thresholds. Figure 3.7

presents the binarization effect on PH-HOG and PH-LBP. PH-BRIEF is ex-

cluded from the evaluation as it is inherently binary. PH-HOG achieves a clear

peak when the top 20% of the values are set to 1. For greater binarization

thresholds the discriminant property of the binary descriptors drops rapidly.

PH-LBP is not affected by the binarization process. Due to the sparse edge

maps of the patches, the resulting vectors contain few non-zero entries. There-

fore thresholding the top values does not affect the final description. Based

on the above, we fix the binarization threshold to 20% for all the following

experimental setups.

3.4.4 Impact of the Spatially-Aware Index

To verify the effectiveness of the location aware index in matching perfor-

mance, we compare it against a non-spatial version. Additionally, we explore

the role of the search radius parameter r during voting. The experiments were

conduced in the Flickr15k dataset. Figure 3.9 illustrates our findings. The

degradation of performance with an non-spatially-aware index is evident. The

1http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
2http://www.mathworks.co.uk/matlabcentral/fileexchange/

33863-histograms-of-oriented-gradients

http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
http://www.mathworks.co.uk/matlabcentral/fileexchange/33863-histograms-of-oriented-gradients
http://www.mathworks.co.uk/matlabcentral/fileexchange/33863-histograms-of-oriented-gradients
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Figure 3.7: Flickr160: Impact of
binarization threshold in retrieval.
We set the top b% values to 1 and
the rest to 0.

Figure 3.8: Flickr160: Average
MAP score for the five sketch cat-
egories.

Figure 3.9: Effect of spatial information encoding in retrieval performance.
Our spatially-aware index structure improves the MAP score in Flickr15k.

MAP score drops from 0.20 to 0.07. The performance decline occurs because

two patches located in arbitrary positions are allowed to be matched. We

observe a MAP increase, when spatial constraints are introduced. The gain

is small with strict constraints, i.e. low r values, due to the inflexible narrow

search window. Values greater than r = 4 render the search scope broad and

the performance drops. A moderate radius size, between 2 and 4, constitutes

a balanced choice between narrow and generic results.

3.4.5 Grid Resolution

We study the effect of spatial resolution of our approach. Local patches are

extracted from a uniform sampled grid over the images. Figure 3.10 summa-

rizes the MAP scores over varying spatial grid configurations in the Flickr160
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Figure 3.10: MAP scores over varying spatial grids. GF-HOG method is
displayed for comparison purposes. Left: Results on Flickr160. Right: Results
on Flickr15k.

and Flickr15k databases. Obviously, the denser the grid the more detailed the

produced image description. PH-HOG outperforms the rest methods and is

consistently better than GH-HOG. The highest MAP in Flickr160 is observed

under a 12×12 grid. Performance gradually deteriorates as sampling becomes

denser. Similar behavior under grid variations is presented for PH-BRIEF and

PH-LBP. Due to the small size of the database a moderate spatial resolution is

adequate for efficient image/sketch matching. We also notice the large perfor-

mance variation between HOG and the other descriptors. This finding agrees

with previous studies [42, 56, 55, 41] suggesting HOG as the most appro-

priate descriptor in SBIR. We attribute the low performance of PH-BRIEF

and PH-LBP to the noise-sensitive intensity check mechanism these method

implement. Sketch patches contain sparse information biasing the produced

description vectors towards many zero values. BRIEF performs better than

LBP due to the patch smoothing filtering which reduces to some extent the

noise.

In Flickr15k, the findings are slightly different (right part of Figure 3.10).

Retrieval accuracy rises as the spatial resolution increases and stabilizes at

more fine grid configurations. We attribute this change to the larger database

size which introduces image variations . As a result, more local details are

required to accurately represent them. The descriptor performance follows

the same trend as in Flickr160. HOG is the leading descriptor while BRIEF

and LBP following by large margin.
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3.4.6 Retrieval Quality

The best MAP score in Flickr160 is 0.590, achieved on a 12×12 spatial grid by

the PH-HOG. This represents a 9% increase in performance comprated to the

previous state-of-art best score. The spatially-aware patch matching enables

more robust high-level level similarity estimation than the BoF approach. The

key-location-index requires 16.2MB of RAM. The total number of unique key-

location hashes is 404,969. The median number of entries in each bucket is 1.

Empirically, the average bucket has approximately logN entries, where N is

the number of images. The average query time excluding feature extraction

is approximately 9ms.

In Flickr15k, we notice a vast increase in retrieval performance by our

patch hashing scheme (see Table 3.2. Specifically, PH-HOG with a 17 × 17

grid configuration increases the state-of-the-art by 64% reaching a MAP score

0.200. In this setup, the hash index occupies 711MB of memory and the

average query time is 0.2 seconds. The median hash bucket contains 4 entries.

Again, we observe that the bucket size scales logarithmically to the size of the

database.

The EitzSBIR dataset is the largest database of the evaluation in terms of

image volume. Eitz et al. report a correlation score of 0.277 with their tensor

descriptor [42] in conjunction with the BoF model. Recently, a key-shape

approach achieved a slightly better performance at 0.289. The same study also

reports a correlation value of 0.337 by combining keyshapes with the SHOG

descriptor. The keyshape algorithm cannot scale well as it incorporates a

cubic-complexity matching step. Our patch hashing framework outperforms

the previous results. We report an average correlation value of 0.341. The

100,000 database images are indexed in 2.9GB of memory. The average query

time is 0.2 seconds. We note that the query time does not increase as the

database size grows by an order of magnitude. This is attributed to the

logarithmic scaling of the number of buckets entries. For this dataset the

median bucket size is 9. Appendix A illustrates several retrieval results over

all the evaluated datasets.
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Figure 3.11: Top 5 retrieved images for the best performing queries in the
three datasets. From top to bottom Flickr160, Flickr15k, EitzSBIR.

Figure 3.12: Top 5 retrieved images for the worst performing queries in the
three datasets. From top to bottom Flickr160, Flickr15k, EitzSBIR.

3.4.7 Evaluation Under Affine Transformations

We examine how our patch hashing framework copes under affine transforma-

tions. Following the study in [56], we apply a series of transformations to the

query sets of Flickr15k and EitzSBIR. Specifically, we apply translation in a

random direction between [−40, 40] pixels, rotation between [−20, 20] degrees

and uniform scaling with factors in the range [0.6, 1.4]. Figure 3.13 summa-
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Figure 3.13: Performance variation of patch-hashing under affine transforma-
tions in Flickr15k and EitzSBIR datasets.

rizes the results. As expected by our design choices, retrieval performance

deteriorates when the magnitude of transformation increases. Scaling appears

to be the most challenging transformation for the patch hashing framework.

The descriptors display similar behavior under the affine variations with the

PH-HOG maintaining the performance edge. Affine invariance is not a funda-

mental feature in SBIR, still it can assist in few cases. For instance, manually

cropped or scaled images may not be processed well under our current scheme.

Insights in making patch-hashing invariant to affine transformation are given

in section 3.6

3.4.8 Limitations

Figure 3.8 presents the average MAP per sketch category in Flickr160. We

note that category C2 performs considerable lower than the rest. Figure 3.14

clarifies the reason. Categories C2 (Notre Dame) and C5 (Arc de Triomphe)

contain visually similar queries and images. Sketches of category C2 outline
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Figure 3.14: Upper row: Top 3 retrieved images for a query of the worst
performing category in Flickr160. The original sketch query does not contain
many details to precisely describe the correct category -Notre Dame-. Bottom
row: Top 3 retrieved images for a more detailed version of the same query.
This query depicts better the ground truth category, resulting to increased
AP.

only the contour of Notre Dame which matches well with Arc de Triomphe

images from category C5. To reduce the false positives for this category a more

detailed query is recommended. Indeed, we can enhance the performance in

C2 category by painting the characteristic circle of the Notre Dame inside the

building contour. The new query achieves better AP in the database and the

top two images are relevant to the ground truth.

More examples with low performing queries are illustrated in Figure 3.12.

In most cases the retrieved images contain edges in the same position and

direction as the sketches. The queries display high level of abstraction allowing

for several arbitrary matches in the database. Adding semantic information

in the query generation process can effectively reduce this ambiguity.

3.5 Complexity

Scalability is a critical attribute for a retrieval system. Here, we study how

the complexity of our framework is affected in space and time as the database

volume rises
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Figure 3.15: Space growth of the key-location index under increasing number
of images. Size increases sub-linearly to the number of indexed images.

Space Complexity. The key-location index structure should be kept in

memory for quick accesses. Therefore, maintaining the index size small as

the database size increases is important for efficient look-ups. Our scheme

requires s × 8 bytes to represent the min-hash key plus 4 bytes to represent

the location. s is the number of hash functions that are grouped together

to form an s-tuple. Each hash bucket stores image identifiers, so 4 bytes

can accommodate an adequate number of unique identifiers. An index that

scales linearly to the database size can gradually drain the available resources.

Our bias-handling filters guarantee sub-linear space growth of the index, as

hash keys with excessive entries are pruned and no duplicate image entries are

allowed in each hash bucket. Figure 3.15 demonstrates the space expansion

of the index as the database size grows from 10,000 to 100,000 images. We

illustrate the linear case for comparison purposes. It is clear that the index

size increases sub-linearly with the size of indexed images.

Time Complexity. Our query system consists of three core steps that de-

termine the performance: a) feature extraction, b) min-hash calculation, c)

voting. Among these three steps only voting depends on the number of the

database images. During feature extraction we calculate a descriptor for each

grid location. The computation time depends on the nature of the description
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and the size of the patch. Typically, the HOG descriptor computation for

an image is carried out in less than 10ms per image [56]. The binarization

step can be performed in linear time on the number of vector elements via a

selection algorithm [31].

To compute k s-tuples for each binary vector, a linear scan of the vec-

tor is required and k × s hash function evaluations for each non-zero entry.

We can speed-up this step by pre-computing the hash function values. Few

milliseconds are adequate to extract min-hash values from each image. At

voting stage each patch needs to access linearly the bucket entries for all its k

min-hash tuples. An additional scan of the nearby patch buckets is required

as well. The total voting cost is therefore:

Voting complexity =

= O (#patch×#neighbors× k ×#bucketSize)

= O (a× c× k × logN)

= O (logN)

(3.9)

The only value that depends on the image number N is the bucket size. We

have empirically shown that the average bucket size contains logN entries.

Therefore, if we ignore the constants, the complexity of the voting process

is O (logN). Each of the above steps can be readily parallelized as the op-

erations on each patch are independent to each other leading to even lower

response times. The impact of voting complexity can be noticed in the mean

query times of Table 3.3. The query times remain constant in Flickr15k and

EitzSBIR, even though the database size is increased 7 times.

Table 3.3: Time and space statistics of patch hashing over different size
datasets. Flickr15k and EitzSBIR have similar mean query times

Dataset Size Mean Query Time (s) Space (MB)
Flickr160 160 0.009 16
Flickr15k 15K 0.2 711
EitzSBIR 100K 0.2 2500



3.6. Conclusions 72

3.6 Conclusions

In this chapter, we have proposed a robust patch based retrieval technique

which can scale to large image collections. Shape information in the form

of contour orientations is extracted from a patch. The binarization process

further enhances strong continuous contours while facilitating the application

of min-hash algorithm. Alternative shape representations can be applied in

this step, yet further exploration of more appropriate techniques is left as

future work. A spatially-aware reverse index created on the unique min-hash

values and locations allows for efficient search times and parallelization. State-

of-the-art results were demonstrated in three SBIR benchmarks indicating

the retrieval quality of our method and its benefits in sketch/image matching

against the bag-of-feature approach.

Section 3.2 and the experimental evaluation of patch hashing revealed the

discriminant value of spatial information in sketch description. Robust match-

ing goes beyond local appearance similarity and should incorporate holistic

structure correspondences as well. Our algorithm identifies these correspon-

dences via the spatial voting process.

Patch hashing is not invariant to affine transformations. In many current

sketch matching applications the lack of invariance to affine transformations

is not critical. In future though, in order to have a more generic method, e.b.

in dealing with cropped or scale images, this limitation should be addressed.

A drawback of the proposed algorithm is the lack of semantics. Several

fail cases include visually similar images with irrelevant semantic content. The

following chapters will focus on infusing semantics into the search process.
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4.1 Introduction

Machine understanding of everyday human activities and actions consists a

fundamental challenge for computer vision. Sketching to express feelings or

elaborate on a topic is a task dating back to prehistoric times, yet it is still

contemporary and used in daily activities. Sketch understanding requires lit-

tle effort from humans. Furthermore, neuroscience studies [59, 127, 107] have
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shown that humans can decode complex natural scenes from simple line draw-

ings. Evidently, sketching is an efficient and intuitive communication tool be-

tween humans. Human-computer interaction could therefore benefit from this

expression channel given successful machine interpretation of human sketches.

Towards this direction, a large database of 20,000 free-hand drawn sketches

[39] initiated a computational study of how humans draw sketches. Compu-

tational recognition of line drawings is a challenging task due to the abstract

nature of sketching and the inter and intra-class variations between drawings.

Moreover, traditional object recognition techniques cannot be directly applied

to the sketch domain given its lack of color or texture.

Sketch drawings on several occasions deviate from being realistic depictions

of objects or scenes. As a result, algorithms based solely on visual features

lack the advantages of semantic information. In the case of SBIR, where

sketch symbols are frequently drawn, (e.g.. stick man instead of a human fig-

ure), sketch recognition brings a solid contribution towards more accurate and

relevant results to a given query. This section proposes a novel supervised di-

mensionality reduction algorithm to accurately classify freely drawn sketches.

We face sketch recognition from a subspace learning classification perspective,

hence here we overview briefly previous work on dimensionality reduction.

Dimensionality reduction or subspace learning is the transformation that

maps data from a high-dimensional space into a meaningful low dimensional

space. It has been widely used in recognition tasks to mitigate the inherent

drawbacks of high-dimensional spaces. Real-world data like images, videos

and speech signals are by nature high-dimensional modalities. In order to effi-

ciently process this data, its dimensionality needs to be reduced. Furthermore,

such real world data are accompanied by noise which affects the accuracy of

classification algorithms. By exposing the intrinsic dimensionality of the in-

put data, we can generate projection bases that are immune to noise. The

benefits of dimensionality reduction include classification, visualization and

compression of high-dimensional data [124].

One of the first and classic approaches to dimensionality reduction is the

PCA algorithm [63] that generates a subspace where data variance is maxi-

mized. PCA is a linear unsupervised technique, therefore does not produce

discriminant subspaces. LDA [47] exploits the data labels via the within and
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Figure 4.1: Benefits of manifold learning. A) The original Swiss roll structure
in three dimensions. The Euclidean distance between two points (dashed
lined) differs for the distance in the manifold (solid line). B) Approximation
of the manifold distance (red line) via the pairwise distances graph. C) The
unfolded Swiss roll. The picture is reproduced from [121].

between-scatter matrices and performs better in classification scenarios. PCA

and LDA rely on the assumption that data follow a Gaussian distribution

which often do not hold for real world applications. LFDA [117] takes local

structure of the data into account so multi-modal data can be embedded ap-

propriately. ICA [57] and probabilistic PCA [123] were also early extensions

of PCA.

Manifold learning is the branch of dimensionality reduction that inves-

tigates the underlying manifold of data. Originated from ISOMAP [121],

manifold learning techniques attempt to discover a low-dimensional manifold

where the data lie on. A famous example is the Swiss roll which is originally

embedded in a three dimensional space, yet if an ’unfolding’ transformation

is applied on it, a two dimensional manifold is unveiled. An illustration is

presented Figure 4.1. Manifold learning reveals the intrinsic dimensionality of

data which in turn improves accuracy on distance-based classifiers.

In the same spirit, Local Preserving Projections (LPP) [52] and its vari-

ants [50, 24, 76, 138, 51] generate low dimensional spaces that preserve the

local neighborhood of the data, hence the restricting assumptions of PCA and

LDA are avoided. LPP is an unsupervised technique, yet extensions have

been published that make use of data labels. DLPP [138] incorporates in

the optimization process the within and between scatter matrices to achieve

class separability. ILPP [50], ARE [76] and max-margin MMP[51] are semi-

supervised approaches obtaining label information from user feedback. ILPP
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updates its learned projection matrix according to user guidelines. MMP

solves an eigenvalue problem that maximizes the margin between different

labeled samples.

We introduce Discriminant Pairwise Local Embeddings (DPLE), a super-

vised manifold learning algorithm inspired by LPP [52] to facilitate sketch

recognition. Nonetheless, our method is generic and can be applied to any

other classification problem. The main idea is to learn a discriminant sub-

space where the data will be better separated than in the original input space,

without violating much its local neighborhood. The latter ensures that the

data will maintain their manifold structure in the learned subspace, so clas-

sification algorithms can generalize better. We form these goals in a convex

optimization problem that can be efficiently solved through eigendecomposi-

tion. A kernelized version is also introduced to further enhance classification

accuracy. Experiments on a large multi-class sketch database demonstrate the

advantages of our technique.

DPLE’s objective is similar to that of LDE[24]/ARE, yet our formulation

is different and the superiority of our technique is attributed to the following

factors: a) LDE does not exploit the importance of influential samples, i.e.

samples with many close neighbors guaranteed not to be outliers. DPLE

utilizes this information in its objective function. b) ARE employs a non-

flexible encoding scheme for the relationships between data pairs. It weights

equally every pair and does not take into account the distances of samples in

the original space. This approach fails to alleviate the influence of noisy data

pairs that belong to the same class but they are far away in the feature space.

DPLE handles this problem by weighting these relationships with the affinity

matrix.

4.2 Locality Preserving Projections Overview

In this section, we overview the definition of Locality Preserving Projections

(LPP) [52]. LPP is an unsupervised dimensionality reduction technique which

generates projection bases that preserve the neighbourhood structure of the

data. LPP attempts to discover a low-dimensional manifold where the high

dimensional data lie on.
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Let n pairs of data samples and associated labels be denoted by(xi, yi), i =

{1, 2, . . . , n}, where xi ∈ Rd represents a data sample and yi ∈ {1, 2, . . . , |C|}
is the label of the i-th sample. |C| is the total number of classes. Let X ∈ Rd×n

be the matrix of all samples. The i-th column of X is xi. Let zi ∈ Rp(1 ≤ p ≤
d) be an embedded sample and p the dimension of the embedding space. Since

we investigate dimensionality reduction scenarios, we usually require p� d.

Linear dimensionality reduction is performed via the transformation ma-

trix W ∈ Rd×p:

zi = W>xi (4.1)

In Section 4.3.2, we discuss non-linear dimensionality reduction scenarios, but

for now we will focus on the linear case.

The structure information of the data set is represented in the affinity

matrix A. The matrix A captures similarities between data pairs and is

defined as:

Ai,j =


e−‖xi−xj‖2/2σ2

, if xi ∈ Nk(xj)

or xj ∈ Nk(xi)

0, otherwise

(4.2)

where Nk(x) represents the set of k-nearest neighbors of x. A simpler alter-

native to (4.2) is to set Ai,j = 1 if xi is a nearest neighbor of xj or vice-versa;

otherwise Ai,j = 0. In both cases, a high value of Ai,j indicates that xi and

xj lie close in the defined metric space and a low value that they lie apart.

Using A the desired projection matrix W LPP ∈ Rd×p is acquired by the

following optimization problem:

W LPP = arg min
W

1

2

n∑
i,j

‖W>xi −W>xj‖2Ai,j

subject to:W>XDX>W = I

(4.3)

where Di,i =
∑n

j=1Ai,j is a diagonal matrix and I the identity matrix.

The above optimization problem attempts to map data pairs close in the

embedding space if they lie close in the original feature space. The constrain

W>XDX>W = I is to avoid the trivial solution W = 0.
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Using linear algebra the minimization function (4.3) can be rewritten as:

n∑
i,j

‖W>xi −W>xj‖2Ai,j

=
n∑
i

W>xiDiix
>
i W −

n∑
i,j

W>xiAi,jx
>
j W

= W>X (D −A)X>W

= W>XLX>W

(4.4)

where L = D −A is the Laplacian matrix.

Therefore, LPP can be formulated as:

W LPP = arg min
W

W>XLX>W

subject to:W>XDX>W = I
(4.5)

If we apply the Lagrange multipliers to (4.5) and set the derivative with

respect to W to zero we end up with the following formula:

XLX>w = λXDX>w (4.6)

It follows from (4.6) that the optimal W LPP is composed of the generalized

eigenvectors corresponding to the p smallest eigenvalues of the generalized

eigenvalue problem of (4.6).

LPP does not make use of sample labels, as it is an unsupervised algorithm.

In the following section, we introduce a novel technique that handles efficiently

labeled data and preserves the local structure.

4.3 Discriminant Pairwise Local Embeddings

This section describes Discriminant Pairwise Local Embeddings (DPLE), a

novel dimensionality reduction technique and its kernelized variant. As shown

in Section 4.2, LPP is an unsupervised manifold learning technique. In many

recognition tasks though, unsupervised algorithms cannot perform compara-

bly to their supervised counterparts due to the lack of semantic information

provided by the training samples. We show that LPP can be modified to
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take advantage of the labeled samples while preserving the local data neigh-

borhoods. Moreover, our algorithm can be extended to non-linear spaces

utilizing the kernel trick [108].

4.3.1 Linear DPLE

Following the notation of Section 4.2, we assume each data sample xi is asso-

ciated with a label yi. Based on the label information, we define two pairwise

relation matrices. The same-class matrix A(s) representing all the sample pairs

that share the same label and the different-class matrix A(d) representing all

the sample pairs with different labels:

A
(s)
i,j =

Ai,j, if yi = yj

0, otherwise
(4.7)

A
(d)
i,j =

Ai,j, if yi 6= yj

0, otherwise
(4.8)

We observe from (4.7) and (4.8) that matrices A(s) and A(d) are weighted with

the affinity matrix A. If we assign a constant value to similar and dissimilar

pairs as in [76]; for instance if A
(s)
i,j = 1 when yi = yj and A

(d)
i,j = 1 when

yi 6= yj, then all the sample pairs will have equal weights and as a result

structure information will be lost. Instead, by employing the affinity matrix

we assign an ‘importance’ value to each pair. Samples that lie close in the

original input space are more significant and are forced to lie close in the

embedding space. On the other hand, pairs that are apart in the original

space are either ignored or contribute only slightly to the optimal solution.

This idea is similar to the local variant of LDA [117], yet employed in a

different learning framework.

We suggest the following optimization problem:

arg max
W

J(W ) =
1

2

n∑
i,j

‖W>xi −W>xj‖2
(
A

(d)
i,j − γA

(s)
i,j

)
subject to:W>XDX>W = I

(4.9)

where Di,i =
∑n

j=1Ai,j is a diagonal matrix consisted of the row sums of
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A and γ is a scalar to compensate for any imbalances occurred by different

number of pair samples between A(d) and A(s). A recommended value to

assign to γ is the ratio between negative and positive pairs.

The above formulation minimizes the Euclidean distances between all sam-

ple pairs that belong to the same category through matrix A(s) and at the same

time maximizes those between pairs belonging to different classes through ma-

trix A(d). We have previously seen that each pair relationship is weighted by

the affinity matrix A, therefore the intrinsic structure of data is maintained.

The constrain W>XDX>W = I is imposed to avoid the trivial solution

W = 0 and each entry Di,i provides a measure of importance to the embed-

ded sample zi = W>xi.

The objective function in (4.9) can be rewritten as follows using linear

algebra properties:

J(W ) =
1

2

n∑
i,j

‖W>xi −W>xj‖2
(
A

(d)
i,j − γA

(s)
i,j

)
=

n∑
i

W>xiD
(d)
ii x>i W −

n∑
i,j

W>xiA
(d)
i,j x>j W

− γ

(
n∑
i

W>xiD
(s)
ii x>i W −

n∑
i,j

W>xiA
(s)
i,j x

>
j W

)
= W>X

(
D(d) −A(d)

)
X>W − γ

(
W>X

(
D(s) −A(s)

)
X>W

)
= W>X

(
L(d) − γL(s)

)
X>W

(4.10)

where L(s) = D(s) −A(s) and L(d) = D(d) −A(d) are the Laplacian matrices

of A(s) and A(d) respectively.

We can now reformulate our optimization problem:

arg max
W

J(W ) = W>X
(
L(d) − γL(s)

)
X>W

subject to:W>XDX>W = I

(4.11)

Similar to (4.5), we apply the Lagrange multipliers to the above problem and

the set the derivative with respect to W to zero.

X
[
L(d) − γL(s)

]
X>w̄ = λ̄XDX>w̄ (4.12)
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The result is a generalized eigenvalue problem and since L(s), L(d) and D are

symmetric semi-definite matrices all the eigenvalues are real positive numbers.

The optimal projection matrix WDPLE is given by:

WDPLE =

(√
λ̄1w̄1 |

√
λ̄2w̄2 | · · · |

√
λ̄pw̄p

)
(4.13)

where {w̄}pi=1 are the generalized eigenvectors associated with the p largest

eigenvalues λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄p of (4.12).

The steps of DPLE are summarized in the following algorithm:

Algorithm 1: DPLE embedding

Data: (xi, yi) i ∈ {1, 2, . . . , n} , γ, p
Result: Projection matrix: WDPLE

1 Compute affinity matrix A according to (4.2).

2 Compute matrices A(s) and A(d) from (4.7) and (4.8).
3 Solve the generalized eigenproblem of (4.12).
4 Form the columns of WDPLE from the eigenvectors of (4.12)

corresponding to the largest eigenvalues.

DPLE exploits the labeled information encoded in the matrices A(s) and

A(d) to generate discriminate projection bases without violating the intrinsic

structure of the data. The latter is ensured by the leverage of the affinity ma-

trix A which weights accordingly each sample pair. The embedded data lie on

a discriminative semantic manifold which preserves local geometric relations.

As a result classes become better separated in the learned subspace.

4.3.2 Kernelized DPLE

In most real world applications, data in the original input space cannot be

linearly separated, because it is generated by non-linear processes. In such

cases, linear algorithms like DPLE fail to produce efficient embedding spaces.

We show that by using the kernel trick [108], we can generate a non-linear

map from the original high-dimensional feature space to a lower-dimensional

manifold where non-linear data can be efficiently represented.

Let φ : Rd → H be a non-linear map function, mapping the Euclidean

space Rd to Hilbert space H. The Hilbert space is a vector space H with
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Table 4.1: Popular kernel functions

Kernel k(x,y) Formula

Linear xTy

Polynomial (xTy + c)d

Gaussian exp (−‖x− y‖2/2σ2)

an inner product 〈f, g〉 such that the norm defined by |f | =
√
〈f, f〉 turns

H into a complete metric space. In Hilbert space the eigenvector problem of

(4.12) becomes:

φ (X)
[
L(d) − γL(s)

]
φ (X)> w̄ = λ̄φ (X)Dφ (X)> w̄ (4.14)

There is no easy way to directly compute the mapping φ (X), yet we can

employ inner products of mapped data to solve the problem. We define the

inner products of the mapped data as:

Kij (xi,xj) = φ (xi)
> φ (xj) (4.15)

K is a kernel matrix. Some popular kernel functions can be found in Table 4.1.

The eigenvectors of (4.14) are linear combinations of φ (x1) , φ (x2) , . . . , φ (xn),

hence we can write:

w̄ =
n∑
i=1

αiφ (xi) = φ (X)α (4.16)

where α = [α1, α1, . . . , αn]> ∈ Rn. Using (4.16) it is easy to obtain the

kernelized eigenvalue problem:

K
[
L(d) − γL(s)

]
Kα = λ̄KDKα (4.17)

As before, the optimal embedding is obtained from the p eigenvectors corre-

sponding to largest eigenvalues. The embedding of a new sample onto the

eigenvector wk is achieved by:

zk =
(
wk
)>

x =
n∑
i=1

αkiK (x,xi) (4.18)
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The KDPLE algorithm is slightly modified from its linear version:

Algorithm 2: KDPLE embedding

Data: (xi, yi) i ∈ {1, 2, . . . , n} , γ, p, kernel function k(·, ·)
Result: Projection matrix: WKDPLE

1 Compute affinity matrix A according to (4.2).
2 Compute the kernel matrix K for all samples as in (4.15).

3 Compute matrices A(s) and A(d) from (4.7) and (4.8).
4 Solve the generalized eigenproblem of (4.17).
5 Form the columns of WKDPLE from the eigenvectors of (4.17)

corresponding to the largest eigenvalues.

4.4 Experiments

We evaluate the learning generalization capabilities of our algorithm. First,

some toy data are employed to demonstrate the discriminant features of

DPLE. Subsequently, we perform extensive evaluations against competitive

manifold learning algorithms in face and sketch recognition domains. DPLE

and its kernelized version is superior than its alternatives and performs com-

parable to SVM in sketch recognition.

4.4.1 Toy Examples

Artificial two-dimensional data from three independent Gaussian distributions

are generated to test the discriminant property of DPLE’s projections. Fig-

ures 4.2, 4.3 , 4.4 visualize the results. The data consists of two classes indi-

cated by red crosses and blue circles that are not linearly separated. We apply

the DPLE embedding and generate a discriminant subspace of 1D. Figure 4.2a

shows the computed subspace along with the projections of the original data.

DPLE optimization outputs a meaningful linear projection that results to

maximization of data variance and structure preservation.

Subsequently, we test KDPLE’s generalization ability on the same dataset.

We again generate an 1D subspace for the linear and Gaussian kernels. As

expected, the linear kernel fails to dichotomize the non-linear data, as opposed
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Figure 4.2: DPLE example from 2D to 1D. There are two data classes indi-
cated by red and blue.
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(c) KDPLE 1D.

Figure 4.3: DPLE example from 2D to 1D. There are two data classes in-
dicated by red and blue. Data can be linearly separated after the KDPLE
projection. The same does not hold for the linear DPLE subspace.
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Figure 4.4: Demonstration of DPLE properties in 2D. DPLE cannot linearly
separate data but it reduces the variance within the classes. KDPLE gener-
ates a discriminant projection where data are linearly separated and within
variance is greatly reduced.

to the Gaussian kernel which discovers a subspace where data are optimally

separated. See the illustrations of Figure 4.3.
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Figure 4.5: Preview of the ORL faces.

Furthermore, we generate 2D subspaces for DPLE and KDPLE respec-

tively and compare them against the original input space. The results are

plotted in Figure 4.4. We notice that the DPLE projections maintain the

data structure but drastically reduce the variance within the classes, creat-

ing compact clusters. A possible application of such feature could be in data

clustering where DPLE can act as a preprocessing operator. The learned

KDPLE subspace, Figure 4.4c, demonstrates the optimal performance. Data

are linearly separated and, as expected by the objective function’s property,

within-class variance is minimized while variance between different classes is

maximized. The outcome is three highly compact clusters. We also note that

neighbor relations are propagated in the projection. There are two separate

blue clusters as in the original space.

4.4.2 Face Recognition

Next, we evaluate DPLE with face recognition. We employ the well-known

ORL collection of faces [105] as the comparison dataset. ORL includes 40
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Method ORL

Linear

NN 97.5% (p = 136)

PCA 98% (p = 32)

LDA 98% (p = 24)

LPP 96.25% (p = 20)

LFDA 98.5% (p = 12)

LDE 98.5% (p = 21)

DPLE 99% (p = 23)

Kernelized

KLFDA 99% (p = 24)

KLDE 99.25% (p = 21)

KDPLE 99.25% (p = 23)

Table 4.2: Best recognition rates in the ORL face dataset. Parameter p rep-
resents the number of subspace dimensions.

subjects with 10 grayscale images per subject. Samples in a class exhibit

slight variation in face expression and angle. The size of each image is 92x112

pixels, with 256 gray levels per pixel. Following the preprocessing of [24], we

resize each image to 23 × 28 pixels and vectorize the outcome. The original

dimensionality of the data is 644. We apply PCA to the image vectors and

keep 98% of the information. The final features lie in an 136-dimensional

space.

We compare our method with the KNN classifier in the original feature

space denoted as (NN), the classic PCA and LDA algorithms and a collec-

tion of more sophisticated manifold learning techniques, namely LPP [52],

LFDA [117] and LDE [24] along with kernelized versions for the last two. The

KNN rule is used in all methods for classification and the best recognition ac-

curacy over K values {1, 3, 5, 7, 9} is reported. The optimal parameters of each

algorithm are tuned empirically. In the kernelized version of the algorithms,

we employ the RBF kernel with σ = 1. We perform 5-fold cross validation on

all reported results.

We deduct by the performance of the KNN in the original data that the

ORL classes are easily separated by the selected features, see Table 4.2. KNN
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Figure 4.6: Left) 2D projection of the original feature vectors from ORL
dataset. Only 10 of the 40 classes are displayed for visualization purposes.
Right) 2D DPLE projection of the same data. Classes are more compact and
clearly partitioned.

recognition rate is 97.5%. The discriminant manifold learning algorithms per-

form better than PCA, LDA and the unsupervised LPP. KDPLE achieves the

highest recognition rates in this dataset.

The benefits of a DPLE embedding against the original space are illus-

trated in Figure 4.6. We perform a Multi-Dimensional Scaling (MDS) [12]

embedding of the original and DPLE projected data in a 2D space for visual-

ization purposes. MDS is designed to preserve the data distances in the new

subspace. In the original feature space, several classes overlap and as a result

KNN classification rate drops. Differently, in the DPLE subspace each class

is distinctly separated from the rest and forms a solid cluster. Under this

conditions KNN accuracy is boosted.

The ORL dataset is saturated and the resulting deductions, despite offering

a general picture of each algorithm’s performance, are marginal. In the next

section, a more challenging domain will be tested where the pros and cons of

each algorithm will clearly emerge.

4.4.3 Sketch Recognition

We employ the EitzSKETCH [39] dataset for the sketch recognition evalua-

tion. The dataset encompasses 20,000 unique sketches evenly distributed over

250 object categories. Each image depicts a binary sketch of a single object.

All sketches are rescaled to a fixed size and centered in the image canvas to
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accommodate scale and translation invariance. The human recognition accu-

racy on the above database is 73.1% which highlights the challenge for machine

classification. We observe high inter-class and intra-class variability. Some

classes are easily recognized while others regularly misclassified to categories

with similar visual appearance. Moreover, an object can be sketched quite dif-

ferently by various individuals a fact that contributes to the aforementioned

intra-class variations.

We follow the feature representation of [39]. Each sketch is represented

by an ensemble of local features on a 27 × 27 overlapping grid that capture

the main gradient orientations of a sketch region. Each feature vector has

64 dimensions. The local descriptors are then utilized to generate a bag-

of-features representation of the sketch. The resulting descriptor is a 500-

dimensional vector. The features are publicly available in the following link1

and in our experiments we use them as provided with no modification.

We compare DPLE against competitive subspace learning methods as de-

fined in Section 4.4.2. The comparison methods are KNN (NN), PCA, LDA,

LFDA and LDE along with the kernelized versions of the last two. The KNN

classification rule is employed over all evaluations to compute the recognition

accuracy, with K = {1, 2, 3, 4, 5} and Euclidean (l2) and Manhattan (l1) dis-

tances. The reported results are obtained with optimal parameters for each

method over 3-fold cross-validation.

Table 4.3 summarizes our comparative evaluation in sketch recognition.

The recognition rate of KNN classification in the original feature space is

45%, achieved with K = 4 and l1 distance. We observe that PCA and LDA

output much lower rates than NN, highlighting the limitation induced by the

Gaussian distribution assumption of these methods. LPP is also failing to

meet NN accuracy, because of its unsupervised nature. LPP solely focuses

on data structure preservation, hence generates non-discriminant projection

bases.

The linear version of the discriminant manifold algorithms, namely LFDA,

LDE and DPLE, outperform the NN accuracy. All three methods accomplish

similar recognition rates. That occurs because the data cannot be efficiently

separated by linear projections; therefore the recognition accuracy of linear

1http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/

http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
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Table 4.3: Evaluation of dimensionality reduction techniques in EitzSKETCH
dataset. KNN classification with 3-fold cross-validation is used and the best
accuracy over the parameter space is reported. Unless noted otherwise, K = 5
and distance is l2.

Method p = 100 p = 150 p = 200 p = 250 p = 300

Linear

NN 45% (l1)

PCA 39.75% (l1) 41.10% (l1) 41.58% (l1) 41.97% (l1) 41.79% (l1)

LDA 41.20% 40.06% 38.49% 36.89% N/A

LPP 39.66% 41.02% 41.51% 41.67% 41.74%

LFDA 47.11% 46.72% 46.02% 44.95% 43.80%

LDE 46.48% 46.12% 44.89% 43.50% 42.22%

DPLE 46.43% 46.55% 46.41% 46.36% 46.39%

Kernelized

KLFDA 47.86% 47.70% 47.29% 46.55% 46.28%

KLDE 49.46% 50.78% 51.38% 50.89% 50.23%

KDPLE 49.52% 51.14% 52.03% 52.33% 51.19%

methods has an upper limit which all three methods reach. We will show next

that the kernelized versions can overcome this barrier. Another interesting ob-

servation is that DPLE achieves stable recognition rates across the dimension

spectrum which never drops below 46%, as opposed to LFDA and LDE.

KDPLE’s recognition rates are higher than those of the rest evaluation

methods. An illustration of the recognition rate of the kernelized methods is

presented in Figure 4.7. The noticeable increase in accuracy emphasizes the

classification boost induced by the kernelized variations. Data are mapped in

a higher dimensional space via the kernel trick where the learned embedding

can effectively separate them. That does not happen for KLFDA though, we

observe just a slight increase in the accuracy between its linear and non-linear

variation. Furthermore, Figure 4.7 shows that KLDFA cannot cope with a

challenging dataset as well as KLDE or KDPLE. The latter two methods set

similar criteria to generate discriminant projections, but the optimization for-

mulation of DPLE leads to enhanced performance. Specifically, the constrain

of (4.9) implicitly weights the significance of each train sample.

We further study the impact of parameters K and p in the sketch recog-
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Figure 4.7: Left) Sketch recognition accuracy of kernelized algorithms across
varying dimensionality using KNN classification. KDPLE outperforms the
rest methods. Right) Sketch recognition accuracy of KDPLE under varying
dimensionality p and number of nearest neighbors K using KNN classification.

nition accuracy of KDPLE. Figure 4.7 depicts the results. Classification ac-

curacy sharply rises up to K = 10. Additional increase on the number of

neighbors does not affect further the recognition rate. The best sketch recog-

nition rate reached by KDPLE is 53.70%, achieved in a learned subspace of

p = 260 by a KNN classifier with K = 12.

The SVM classification accuracy on this dataset is 56% [39]. DPLE achieves

comparable recognition rates to SVMs by using the simple KNN classifier in

the learned subspace. KNN is by design a multi-class classifier and offers

much faster classification times than SVMs, which are binary classifiers. Fur-

thermore, the dimensionality of data has been reduced to half. That leads to

significant economy on storage space and allows for scalability.

4.5 Conclusions

In this chapter, we introduced DPLE a supervised manifold learning algorithm

that generates discriminant embeddings with a convex optimization process

based on pairwise relations between the data. A non-linear variant of the al-

gorithm based on the kernel trick is also proposed. DPLE generates subspaces

where the neighbor relations are preserved and classes are more compact. The

convex optimization can be reliably and quickly solved via eigendecomposi-

tion. Evaluations in face and hand drawn sketch datasets against several

competitive manifold learning algorithms proved the superiority of DPLE. In
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the sketch recognition domain, DPLE achieves comparable performance to the

well known SVM classifier and compresses by half the space dimensionality. As

a generic dimensionality reduction algorithm DPLE have broad applicability

in several domains.

DPLE cannot modify the learned subspace upon new sample arrival. In-

stead a new optimization problem should be solved with all the available

data. Online updating of the projection matrix with a limited amount of new

samples is an interesting path to explore. Especially, in sketch recognition

after a new query has been drawn, it could be used to expand the learned

space with more information. Moreover, there are cases where the limited

amount of training samples does not allow for reliable approximation of the

underlying data manifold. In the literature, there are suggestions on how to

overcome this limitation especially designed for the image domain [134, 136].

These methods work with two-dimensional matrices, instead of vectors, and

define tensor products between them. Such an approach suit better the two-

dimensional nature of the image domain and take into account the locality of

pixels. Experimental evidence in face recognition have shown improvements

over the traditional vector-based algorithms. DPLE might benefit by similar

modifications. We leave the investigation of these issues as future work.
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5.1 Introduction

In this chapter, we develop a methodology to efficiently match a line draw-

ing to a database of sketches invariant to horizontal flip, i.e. mirror reflection

across the vertical axis. The benefits of sketch recognition have been analyzed

in previous chapters, therefore here we will discuss the advantages of a scalable



5.1. Introduction 93

Figure 5.1: Sketch pairs from [39] exhibiting reflection symmetry across the
vertical axis.

flip-invariant matching approach. Symmetry is a salient visual property. The

Gestalt principle of symmetry, introduced in Chapter 2, states that the hu-

man mind perceives objects as being symmetrical and forming around a center

point. Symmetry can be defined across any axis orientation. Evidence from

several studies [45, 126, 130] support the claim that horizontal reflection sym-

metry is the most prominent. Visual inspection on the available sketches of

EitzSKETCH dataset verifies that the same trend is present in sketch drawing.

Figure 5.1 displays sketch pairs from the same category that exhibit horizon-

tal reflection symmetry. All the above contributed to the decision to focus on

horizontal symmetry and discard other possible orientations.

DPLE produced promising recognition results. Still, there is space for im-

provements. Towards this direction, a sketch matching algorithm can act as

a post recognition filter to re-rank results and provide insight on ambiguous
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cases. A training stage is no longer required. Recent research [39, 74, 83] iden-

tified shape and structure as key properties for robust sketch matching. Our

study in SBIR produced an efficient methodology to exploit these particular

properties. In this chapter, we extend our patch hashing framework to facili-

tate sketch matching and recognition while accounting for flip-invariance. The

modified algorithm generates a matching score between two sketches by count-

ing their local region correspondences. We establish region correspondences

based on similar patches in terms of shape, that are located in nearby posi-

tions. The feature description and index mechanism of Chapter 3 is adopted.

Obviously, the same limitation of affine invariance is propagated as well. We

employ the min-hash algorithm to estimate local shape similarities. Each new

input sketch generates a ranking on the indexed sketches. The generated rank-

ing can be exploited for robust sketch recognition. Furthermore, we propose

a customized version of the patch hashing algorithm invariant to reflection

symmetry across the vertical axis and we show that it can drastically im-

prove recognition performance. We perform extensive experiments with two

challenging sketch datasets with various appearance features and demonstrate

state-of-the-art results in low computational time. Matching algorithms gen-

erally require tedious computations to produce robust results and suffer from

scalability issues, as exhaustive one-to-one comparisons with all available ex-

emplars must be performed. Our method can be seen as a sketch-to-sketch

retrieval framework. As opposed to traditionally slow matching techniques,

our algorithm can scale well and can generate a ranking on 20,000 sketches in

a fraction of a second.

5.2 Related Work

Sketch-to-sketch matching is an open issue for researchers and has been stud-

ied since the early days of computers evolution [94]. Early approaches focused

on sketch domains of structured nature, like diagram recognition [109, 49, 7].

These approaches extract simplistic stroke features and cannot cope with

the complexity of freely drawn sketches. Deformable template matching ap-

proaches [37, 84] have also been studied in literature but face scalability issues

due to their computational complexity.
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Freely drawn sketches are often collections of rough strokes without any

well defined form. For this reason, shape descriptors defined for closed-curve

sketches, like the inner-distance [77], fail to capture the characteristics of such

drawings. Advances in sketch based image retrieval [42, 56] identified his-

tograms of oriented gradients as a pertinent feature for the sketch domain.

Moreover, the sparse nature of line drawings dictates the adoption of large

patches for more elaborate descriptions. Supervised learning methods like

DPLE used a bag-of-features (BoF) [42] representation of these features for

free hand sketch classification and showed promising results. BoF have been

successful in generic object recognition [114, 9]. One of its drawbacks is the

lack of spatial information in vector encoding. Solutions to this have been

proposed in the form a spatial pyramid [71] or a spatial codebook [17].

Lately, attention has been given to structured features approaches. In

[74], a star graph model is employed to establish appearance and structure

similarities between features. Local HOG features are calculated for each

sketch and a weighted combination of appearance and location cues arbitrates

on matching quality. The star-graph model with a supervised category filtering

achieves state-of-the-art accuracy in the EitzSKETCH dataset with 61.5%

accuracy. This approach is computationally expensive as several distance

evaluations are carried out for each matched pair. In [83], a sketch-to-sketch

retrieval algorithm is suggested using dense feature sampling and hierarchical

codebook to encode structure information.

5.3 Horizontal Flip-Invariant Matching

5.3.1 Matching and Recognition

The matching algorithm follows the same strategy as in Chapter 3. A brief

summary of the process is as follows: each sketch is represented by several

overlapping patches. A spatially-aware index is built upon the local extracted

features and the score between two sketches is computed with (3.8). For

presentation purposes we redefine (3.8) here. The reader can refer to Chapter 3

for a detailed explanation of how to extract features and construct the hash
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table. Our redefinition of (3.8) is:

score(Q, T ) =
∑
v∈Q

hit(v, T ) (5.1)

where v is a key-location hash value and Q, T collections of key-location values

of a query and an indexed sketch respectively.

We observe that objects are often drawn with strong mirror symmetries

across the vertical axis. An airplane sketch for instance can be drawn facing

the left or the right side of the canvas depending on the drawing style of each

individual. A airplane sketch facing to the left is therefore likely to match well

to sketches of the same category facing to the right and vice-versa. We make

our patching framework flip invariant across the vertical axis by generating

a new horizontal flipped sketch for each new query and match both versions

against the database. We keep the highest score among the two versions for

each indexed exemplar.

score(flip)(Q, T ) = max{score(Q, T ), score(Qflipped, T )} (5.2)

The new flipped version of the sketch, Qflipped, is obtained by flipping its

columns in the left-right direction.

The modified voting function expands the matching scope of (5.1) and is

able retrieve flipped variants of a query in a database. The rank k retrieval

induced by (5.2) and query Q is defined as:

rank(k,Q) = arg min
1,...,k

{score(flip)(Q, T1), . . . , score(flip)(Q, Tn)} (5.3)

where Tj is the j-th indexed sketch in the database and n the total number

of indexed exemplars.

If there are |C| available classes Ω = {ω1, ω2, . . . , ω|C|} and each exemplar

Tj is attached to a known class ω, we can predict the unknown class ώω of

a new query using the K-nearest neighbor classification rule on the ordered

ranking of (5.3).

ώ(Q, K) = KNN (rank(1,Q), rank(2,Q), ..., rank(K,Q)) (5.4)

Equation (5.4) discovers the K nearest samples of Q. The most frequent
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occurring class among the K samples decides on the class prediction ώ. When

multiple classes occurring equally frequently the prediction is set to the class

of top ranked sample.

5.4 Category Filtering

The computational cost of matching can be reduced by generating a sort list

of categories. A general purpose learning algorithm can be employed to select

the m most probable categories of a query Q, where m� |C|. Subsequently,

the matching and recognition can be executed only for samples belonging to

the m pre-selected categories. Apart from scaling down the search domain,

category filtering offers accuracy boost via sample elimination. The similarity

criteria can vary between category filtering and matching. For instance, the

former can select categories with local appearance similarity while matching

can discover holistic structure and flip correspondences.

In this work, we choose the SVM classifier to implement category filtering

over DPLE for two reasons. SVMs shown slightly better sketch recognition

accuracy than DPLE and their classification output is category based instead

of sampled based. That is convenient when the goal is to rank all the available

categories given a sample. SVMs is a supervised binary classifier that attempts

to locate a hyperplane that maximizes the separation margin between two

classes. The objective function of the SVMs can be formed as a solution of

a quadratic programming problem that can be solved via various methods,

a popular one being the sequential minimal optimization (SMO) algorithm.

More details and theory on SVMs can be found in [32]. The maximum-margin

hyperplane can be described from the samples that lie on the margins. These

samples are named support vectors and denoted as si. Classification on more

than two classes can be achieved by the 1-vs-all rule. If there are |C| classes in

total, we train |C| separate SVM classifiers with each paradigm receiving the

train samples of one class as positives and the rest as negative. The decision

function of a new sample x on the binary classifier of category c is defined as:

f c(x) =
∑
i

aciK(sci ,x) + bc (5.5)
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where aci is a weight assigned to each support vector during training and b(c)

the bias threshold which is again obtained during training. K is a kernel

function. The sample x is assigned to the class with the maximum function

response, i.e. the class that represents the most confident decision. To facilitate

category filtering, the m predominant categories with highest decision values

are selected.

A BoF representation is adopted for sketches during the category filtering.

We uniformly sample a 35 × 35 grid on each sketch and calculate a feature

vector on a 40 × 40 image region. Each region is divided in 4 × 4 cells and

coarse quantized into 4 orientation bins between [0, π). The resulting local

features vector has 64 dimensions. We generate a codebook of 500 words

based on clustering of the local descriptors. The final sample descriptor x is

a histogram of visual words. The SVMs are trained with cross-validation and

optimized parametrization in each dataset.

5.5 Experiments

5.5.1 Datasets

The evaluation is carried out on two challenging sketch datasets. As in pre-

vious chapters, we use the EitzSKETCH dataset [39], which incorporates 250

object categories with each category being represented by 80 sketches. As the

sketches are freely drawn by humans the dataset exhibits high variance over

the categories. The participants of the study recognized on average 73.1% of

all sketches correctly. A more detailed description of the dataset can be found

in Section 2.3.2.

We also use the query set of the Flickr15k benchmark [56], as a second eval-

uation dataset. 10 subjects of average artistic skill participated in this study.

In total, there are 33 sketch categories describing shape, building landmarks,

objects and scenes and 10 sketches per category, one for each subject. Some

categories display high visual overlap. An overview of the available classes is

available in Figure 5.2.



5.5. Experiments 99

Figure 5.2: Preview of the 33 sketch categories of Flickr15k.

5.5.2 Experimental Setup

Features. In all experiments a 35 × 35 grid is applied to sketches and lo-

cal features are computed in square patches of 20 pixels radius. We explore

the performance of three type of features in sketch matching, namely HOG,

BRIEF [16] and LBP [96]. BRIEF and LBP descriptors are implemented with

the settings described in Section 2.2.1. The HOG features are computed ac-

cording to [39]. A 4 × 4 cell grid is applied to each patch and in each cell a

4-bin orientation histogram in the range [0, π) is computed. The final HOG

descriptor for each patch is a 64-dimensional vector.

Parameter settings. We empirically found that the min-hash parameters

k and s have little effect on performance, hence we fix them to k = 50 and

s = 2. We also globally fix the binarization threshold to top 20% of the

vector values for the HOG and LBP descriptors. During the key-location-
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Table 5.1: Sketch recognition accuracy comparison in EitzSKETCH and
Flickr15k datasets. In the case of patch hashing the supervised reported re-
sults are achieved with category filtering.

TU-Berlin Flickr15k

Method Unsupervised Supervised Unsupervised Supervised

KNN 45% [39] N/A 57.2%± 3.7 N/A

SVM N/A 56% [39] N/A 76.9%± 3.6

DPLE N/A 53.7% N/A 64.5%± 2.9

Yi et al. [74] 53.3% 61.5% N/A N/A

PH-LBP 29.6± 0.2 39.1%± 0.2 60.6%± 2.8 66.0%± 5.5

PH-LBP-flip 31%± 0.1 39.7%± 0.1 61.5%± 5.8 67.2%± 5.3

PH-BRIEF 44.4%± 0.1 49.2%± 0.2 67.2%± 4.9 69.0%± 3.8

PH-BRIEF-flip 45.5%± 0.3 51.6%± 0.1 67.9%± 5.1 69.1%± 2.7

PH-HOG 56.2%± 0.2 61.4%± 0.3 74.2%± 1.8 77.4%± 3.6

PH-HOG-flip 58.5%± 0.2 62.8%± 0.2 75.7%± 2.8 77.8%± 4.7

index construction we discard min-hash values that occur more than 100,000

times in EitzSKETCH and 7000 in Flickr15k dataset. At the voting stage,

we use the Manhattan distance to enforce locality constraints and set the

corresponding threshold to 4. For the KNN classification of the rankings, we

use K values between {1, 3, 5, 7, 9} and report the best score. Finally, category

filtering is performed with SVM, as described in Section 5.4. We keep the top

5 categories in EitzSKETCH and top 2 in Flickr15k.

Notations. We denote as PH-HOG, PH-BRIEF, PH-LBP the patch hashing

methods with the corresponding descriptors. We prefix the category filtered

results with the SVM- keyword and suffix the flip invariant methods with the

-flip keyword. For example, SVM-PH-HOG-flip denotes the patch hashing

algorithm trained with HOG features, category filtering and flip invariance

filters on.

Alternative methods. We compare our algorithm against recently pro-

posed structure based techniques that demonstrated competitive sketch recog-

nition results, namely, the star-graph model of Yi et al. [74] and the sketch

retrieval algorithm of Ma et al. [83]. Additionally, we include comparisons

against the baseline KNN and SVM methods in both datasets, built with the
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Figure 5.3: Rank n CMA and CBMA curves in the EitzSKETCH dataset.
Best viewed in color.

HOG features.

Metrics. Following [74], we perform 4-fold cross validation in the EitzS-

KETCH dataset and 5-fold in Flickr15k. We measure the recognition ac-

curacy on both datasets and additionally report the Cumulative Matching

Accuracy (CMA) and the Cumulative Best Matching Accuracy (CBMA) in

the EitzSKETCH dataset for a fair comparison with [83]. CMA shows how

often the correct category appears in top n retrieved sketches, while CBMA

measures the correctly retrieved sketches that account for the most of the top

n retrieved sketches.

5.5.3 Discussion

Table 5.1 summarizes recognition accuracy over the two datasets. The cate-

gory filtered (supervised) SVM-PH-HOG-flip algorithm achieves a new state-

of-the-art score of 62.8% in the challenging EitzSKETCH dataset. We also

note that the unsupervised PH-HOG-flip outperforms the SVM and the star-

graph model by a large margin. Both our method and [74] are based on struc-

tured features. We attribute the superiority of patch hashing to the robust

matching between local patches via the spatial voting and the binarization pro-

cess that highlights the major patch orientations. Moreover, we verify that

horizontal flip invariance improves the recognition performance from 56.2% to

58.5% and is a well-suited property for sketch matching. Figure 5.5 illustrates

queries that benefit for flip-invariance. We observe that in several non flip-
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Figure 5.4: Confusion matrix of Flickr15k for PH-HOG-flip. Red tones corre-
spond to higher accuracy. The two most confused category pairs are illustrated
on the right part of figure. Best viewed in color.

invariant cases the best matched exemplar belongs to different category than

the query, although there is considerable visual similarity among them. The

flip-invariant method re-evaluates the matching scores and ranks higher same

class horizontal reflected sketches. We have also experimented with vertical

symmetry invariance but found it has negative effect on the performance.

The alternative features fail to be as discriminant as their HOG counter-

parts. Congruent conclusions have been drawn in the previous sketch/image

matching experiments in Chapter 3. BRIEF and LBP are sensitive to noise.

Sketch patches contain sparse information and binary values, thus amplify

this drawback. BRIEF performs better than LBP due to the patch smoothing

filtering which reduces to some extent the noise.

Results on the Flickr15k dataset are coherent with the findings on EitzS-

KETCH. The impact of flip invariance is slighter due to the low number of

samples per category that leads to limited reflection variations within each

class. Figure 5.4 presents the confusion matrix for the PH-HOG-flip method

along with the two most confused category pairs. Visual inspection of samples

belonging to these categories reveals high appearance overlap between them.

Indeed, even a human cannot distinguish between sketches belonging to cat-

egories Rome Antica and Pantheon without any disambiguation hint. This
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Query NO-FLIP MATCH FLIP MATCH

Figure 5.5: Examples that benefit from flip invariance. (Left) Original query.
(Middle) False rank 1 classification by non flip-invariant matching. (Right)
Correct rank 1 classification by flip-invariant matching.

highlights the limits induced in sketch recognition by the abstract oriented

artistic skill of the average user. A text label accompanying each sketch can

shed light on analogous situations.

We further evaluate PH-HOG in the EitzSKETCH dataset using the CMA

and CBMA curves. The last 20 sketches of each category are used as queries.

We compare patch hashing against Ma et al. [83] which has been especially

developed for sketch retrieval. KNN classification [39] is also included in the

evaluation as baseline. Figure 5.3 displays the curves. SVM-PH-HOG-flip

achieves superior performance in both metrics and maintains the edge over

all ranks. Once more, flip invariance contributes to more robust results. Our

scheme is equally scalable to [83]. We implemented patch hashing in a 16-core

machine. The average query time in EitzSKETCH dataset is 0.2s for the PH-

HOG and 0.3s for the flip invariant version. The key-location-index occupies

514MB. Accordingly, in Flickr15k the index needs 48MB and average query

times are 0.07s and 0.08s for the PH-HOG and PH-HOG-flip.
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Figure 5.6: Top5 retrieved sketches for DPLE and PH-HOG-flip.

5.5.4 Improvements over DPLE

As noted in the introduction, sketch matching can refine the recognition results

of any general learning algorithm. We design an experiment to demonstrate

the performance edge gained by post recognition re-ranking. We divide the

EitzSKETCH dataset in three partitions with stratified sampling and use the
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Table 5.2: Recognition accuracy of KDPLE and re-ranked KDPLE with sketch
matching in EitzSKETCH dataset.

Method K=1 K=3 K=5 K=7 K=9

KDPLE 49.4% 51.1% 53.3% 53.7% 54.3%

KDPLE+PH-HOG 54.5% 58.6% 57.9% 57.0% 56.2%

KDPLE+PH-HOG-flip 55.9% 60.1% 59.4% 58.2% 56.8%

first two for training and the last for testing. The DPLE algorithm with opti-

mal parameters is trained and a ranking of the training samples is generated

for each query based on Euclidean distances in the learned subspace. The

KNN accuracy over K values between {1, 3, 5, 7, 9} for the DPLE rankings

is reported. Subsequently, the first 12 retrieved samples of each query are

re-ranked based on their matching score with the test sample. KNN classifi-

cation accuracy is re-evaluated in the new rankings. We use the PH-HOG and

PH-HOG-flip algorithms to perform the matching. Table 5.2 summarizes our

findings. A noticable accuracy boost is observed over all K values reaching

a peak of 18% increase for K = 3. The gain is greater for small K values

as the first ranked samples represent the best matched sketches of the the

train set and the confidence of belonging to the same category as the query

is high. The positive impact of flip-invariance is verified once more in this

experiment. Moreover, Figure 5.6 displays a comparison between the top 5

retrieved sketches of DPLE and PH-HOG-flip. As expected, the latter are

more consistent and semantically similar to the query.

5.6 Semantic Sketch Based Image Retrieval

The motivation behind sketch recognition in our study is to infuse semantic

information to the image retrieval module without user intervention. Seman-

tics are essential in SBIR to eliminate outliers and irrelevant images from the

search results. One way to acquire human knowledge is to prompt the user

to provide a text label along with the drawn sketch. This renders the query

process cumbersome and counter-intuitive to the purpose of SBIR which is

drawing. Here, we show that a fully automatic semantic retrieval framework,

that requires only a sketch as a user input, can produce robust retrieval results.
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Sunset PH-HOG

Semantic PH-HOG

Oxford Bridge PH-HOG

Semantic PH-HOG

Horse PH-HOG

Semantic PH-HOG

Buttefly PH-HOG

Semantic PH-HOG

Taj Majal PH-HOG

Semantic PH-HOG

Figure 5.7: Top 9 retrieved images in Flickr15k dataset for few sample queries
for PH-HOG and semantic PH-HOG. Semantics are automatically infused to
PH-HOG via sketch recognition.
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Table 5.3: Impact of sketch recognition in SBIR. Semantics are infused in the
PH-HOG rankings via sketch matching. Retrieval quality measured with the
MAP score in Flickr15k dataset.

Method MAP on Flickr15k

PH-HOG 0.200

Semantic PH-HOG 0.762

An overview of our semantic framework is depicted in Figure 1.4.

We demonstrate the performance of our approach in the Flickr15k dataset.

This image collection is labeled and each image is either related to one of

the available 33 sketch categories or denoted as noise. When a new sketch

query is provided, the recognition module categorize it to one of the available

classes. Succeeding recognition, retrieval is performed to the subset of images

that are labeled with the recognized category. The unsupervised flip-invariant

matching algorithm, introduced in this chapter, implements the recognition

module. Retrieval is carried out through the PH-HOG method presented in

Chapter 3. The MAP metric evaluates the quality of the retrieval results,

penalizing high ranked erroneous retrievals. Table 5.3 reports our findings.

The MAP score of PH-HOG is 0.200. When semantics are injected in the

process, the MAP score elevates to 0.762. A comparison between the top

ranked images of the two models is illustrated in Figure 5.7. The quality

of the semantic enhanced retrievals is evident. All the outlier images have

been discarded from the top ranks. The diversity of the results has also been

considerably improved. The whole process is fully unsupervised and does not

require any user action, other than sketching.

The semantic MAP score directly correlates with the sketch recognition

accuracy. Experiments in Section 5.5.3 have shown that our sketch recog-

nition module reaches an accuracy rate of 75.7% in the Flickr15k dataset.

We notice the semantic MAP score and the sketch recognition accuracy are

approximately equal. Therefore, robust recognition is a fundamental require-

ment in our semantic framework. Still, there will be cases that recognition

will fail. A possible remedy to this situation is to present the user with a

set of the most probable categories in descending order. Even if the primary

projection is false, there is high probability the correct answer is included in
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the set. For instance, in Flickr15k the correct sketch category is present 95.5%

of the times in the top 15 retrieved sketches.

5.7 Conclusions

In this chapter, we presented a flip-invariant sketch matching and recognition

algorithm. State-of-the-art results achieved in the challenging EitzSKETCH

dataset over competitive alternative methods. Our category filtered algorithm

recognizes correctly a sketch 62.8% of the times when the human rate is 73.1%.

Best results are also demonstrated in the Flickr15k sketch set.

We identify the key components of a robust sketch-to-sketch match as

the following: a) histograms of oriented gradient for patch representations

b) structure c) horizontal flip-invariance. The latter boosted the recognition

rates in all experimental setups and motivates further research in features that

encode Gestalt principles, such as continuity and grouping. Moreover, there

are recent results in the psychology literature [106] justifying the use of various

types of symmetries as a set of general constraints to help in vision problems.

The patch-hashing mechanism can not handle affine transformations. An

approach that will combine affine invariance and structure preservation could

be worth investigating.

Sketch recognition can act as a preprocessing step in a sketch based image

retrieval framework to infuse semantics. We have experimentally evaluated

the performance of this approach and found it induces great impact in the

retrieval quality.



Chapter 6

Conclusions and Future

Developments

6.1 Concluding Summary

The scope of this thesis is to review and extend the knowledge in machine

sketch understanding and its applications. Our research focuses on the fol-

lowing major questions:

• How can a machine match a free hand-drawn sketch to a database of

photos in real time?

• How possible is for a machine to recognize a sketch with human accu-

racy?

Our attempt to answer these questions lead to the development of contribu-

tions that extended the state-of-the-art in sketch based image retrieval (SBIR)

and sketch recognition. Still, despite the considerable progress reported here,

human-like accuracy has yet to be reached. In particular, sketch-to-image

matching can be visually accurate but the lack of semantic information prop-

agates inconsistencies to the results. Our semantic SBIR framework bridges to

some extend this knowledge gap, yet is strongly dependent on the accuracy of

sketch recognition. In this domain the findings are promising. We have shown

recognition accuracy that reaches 62.8% in a database of 250 categories when

the human accuracy is 73.1%. Furthermore, machine performance overcomes

humans when top 3 category predictions are allowed.

A fundamental step towards machine sketch understanding includes the

detection of discriminant properties that can uniquely identify a sketch. From

our work, the following deductions emerged. Sketch-to-image and sketch-to-

sketch matching share identical description criteria. Essentially, they form the
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same domain, if edge detection is applied to an image. Since edge detection

research has reached a mature level and natural lines can be extracted from an

image [89], it does not become a barrier in sketch-to-image matching. A com-

bination of local histograms of orientated gradients and structural information

offers robustness and should be a starting point for future improvements in

sketch description. Our research showed that coarse patch representations

focusing on dominant lines and discarding finer details suffice to efficiently

describe a local region of a sketch. However, local visual appearance on its

own can not adequately capture the global gist of a sketch. Structure con-

straints need to be enforced. This is equivalent to the pieces of a jigsaw puzzle

which individually might look quite similar, but only if they are placed in an

appropriate position reveal the whole picture.

The role of horizontal reflection symmetry in sketch-to-sketch matching

consists another significant finding of our research. Its effect and application

have not been earlier studied in the sketch domain. Horizontal symmetry is

frequently exhibited in human drawings, hence a flip-invariant matching al-

gorithm obtains an advantage over alternative non flip-aware methods. Our

experiments revealed that vertical and diagonal symmetries do not grant per-

formance benefits in sketch recognition.

The high volume of images on the web renders scalability a crucial aspect

of any image retrieval algorithm. The need for parallel solutions is constantly

increasing. Our spatial-aware hash index manages to encode the earlier men-

tioned appearance and structural features and enables queries in sub-linear

time. Additionally, the index can be sharded into smaller chunks and be

distributed across several machines for parallel computing.

Furthermore, this document constitutes an important reference for other

researchers entering the area, as a useful starting point to grasp the current

trends in the field, as well as look for promising routes for further research

advancement. In the remainder of this chapter, we present a summary of the

contributions of our work and insights for future research on the field.

6.2 Summary of Contributions

This section offers a brief overview of the contributions in each chapter.
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• In Chapter 3, we proposed a method for scalable image retrieval given

a sketch query. Our patch hashing algorithm combines appearance and

structure features and employs the min-hash algorithm to efficiently in-

dex these properties. To validate our approach, we conducted experi-

ments in three SBIR benchmarks of varying size from 160 to 100,000

images. Two kinds of metrics were employed in the evaluation. The

Mean Average Precision (MAP) score which rewards correct top ranked

images and the Kendall’s coefficient which measures correlation between

machine and human rankings. In both cases, patch hashing outper-

formed competitive techniques and set a new state-of-the-art score. The

role of feature description was also investigated by conducting experi-

ments with three different kinds of features. The HOG descriptor proved

to be far superior than the alternatives. Space and time analysis of our

algorithm showed that it can cope well with large datasets. A series of

tests highlighted the lack of affine invariance in patch hashing which con-

sists a possible drawback of our method. Furthermore, several cases of

noise in the top ranked results motivated a research shift towards sketch

recognition in an attempt to infuse semantics in the retrieval process.

• In Chapter 4, Discriminant Pairwise Local Embeddings (DPLE) a novel

supervised manifold learning algorithm was introduced to facilitate, among

others, sketch recognition. DPLE generates discriminant subspaces where

data can be better separated, while their structure is maintained. More-

over, its optimization function corresponds to a generalized eigendecom-

position problem and can be efficiently computed. As a general learning

technique, DPLE was evaluated in two domains, namely face and sketch

recognition. In both domains, a collection of competitive unsupervised

and supervised dimensionality reduction algorithms were tested as well.

DPLE produced consistently superior results. Specifically, in the sketch

domain KNN classification in the DPLE subspace achieved comparable

performance to the well known SVM classifier. On top of that, data di-

mensionality was reduced to half. A known issue of supervised subspace

learning methods is that they can not update a learned embedding upon

new sample arrival and need to be re-trained. The future work section

offers directions on how to possibly overcome this problem.
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• Finally, as described in Chapter 5, we investigate how a matching algo-

rithm can improve the state-of-the-art in sketch recognition. We extend

the earlier developed patch hashing model to incorporate horizontal flip-

invariance. A category filter is also implemented to further boost recog-

nition accuracy. Our matching method possesses dual functionality as

it can be employed both for sketch-to-sketch retrieval and sketch recog-

nition via the KNN classifier. We evaluated the retrieval quality and

recognition accuracy our approach in the challenging EitzSKETCH and

Flickr15k datasets. Horizontal flip-invariant matching achieved supe-

rior results over all experimental setups. Interestingly, the unsupervised

performance of our method is higher than the supervised SVMs. Sub-

sequently, the recognition results were exploited to perform semantic

filtering on the SBIR rankings. Our unsupervised semantic SBIR frame-

work demonstrated a significant increase in retrieval quality, measured

with MAP, from 0.200 to 0.768.

6.3 Directions for Future Research

Research in machine sketch understanding is ongoing and rapidly evolving.

The contributions and inquiries of this thesis lead to a series of paths that

entail further exploration.

• We showed that the combination of appearance and structural features

constitutes a description tailored to the sketch domain. Out patch hash-

ing framework can encode these properties, yet is sensitive to affine

transformations. Although, affine invariance is not a highly desirable

feature in SBIR, it might be useful in sketch matching. Therefore, an

extension of patch hashing robust to transformations such as scaling, ro-

tation and translation while maintaining the structure setup of a sketch

would be worth investigating. A possible way to handle this is to mon-

itor relative distances between local patches. Therefore, if an affine

transformation occurs we can refer to the original distance configura-

tion and infer the changes. This approach requires a non-fixed grid and

appropriate patch sampling should be performed.
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• Exploration of alternative visual features better suited for sketch descrip-

tion. In this work, we focused on horizontal symmetry, still there are

several other options worth investigating. For instance in [11], descrip-

tors that can capture Gestalt principles such as repetition are suggested.

Moreover, sketching is a time evolving process. The role of temporal in-

formation in free hand sketch description is currently not clear.

• Compact visual descriptors to accommodate extremely high volumes of

images. In patch hashing each sketch is represented by multiple small

collections of min-hash values. A more efficient solution would be a

compact single sketch descriptor that can combine local properties and

transfer them to a similarity function. Evaluations under this scheme

can be expressed as a vector product and can be computed very effi-

ciently. The traits of a recently introduced work [118], can be followed

to achieve this goal.

• Out-of-sample extension of the DPLE method. As mentioned earlier, a

new unknown sample can not expand the already learned subspace of

DPLE without re-training with the full sample set. The out-of-sample

extension allows a new sample to be injected in the subspace individually.

Approaches similar to [10, 133], that treat images as matrices instead

of vectors, could be followed to improve DPLE.



Appendix A

Sketch Based Image Retrieval

Results

In this appendix, we display top ranked image retrieved images given queries

from the three evaluations datasets, used in Chapter 3.

A.1 Flickr160

Figure A.1: Top 9 retrieved images for all query categories in Flickr160
dataset. The PH-HOG method of Chapter 3 is used for retrieval.
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A.2 Flickr15k

Figure A.2: Top 9 retrieved images in the Flickr15k dataset for all query
categories. The PH-HOG method of Chapter 3 is used for retrieval. Semantic
PH-HOG indicates results reranking based on unsupervised sketch recognition.
Sketch recognition is carried out via flip-invariant matching introduced in
Chapter 5.
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A.3 EitzSBIR

Figure A.3: Top 9 retrieved images for all queries of the EitzSBIR dataset.
The PH-HOG method of Chapter 3 is used for retrieval.
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Appendix B

Sketch-to-Sketch Retrieval

Results

The results following are top ranked sketch retrievals from the EitzSKETCH

and Flickr15k datasets.

B.1 EitzSKETCH

Figure B.1: Top 9 retrieved sketches in EitzSKETCH dataset. The SVM-PH-
HOG-flip method of Chapter 5 is used for retrieval. EitzSKETCH contains
20,000 sketches evenly allocated in 250 categories.
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B.2 Flickr15k

Figure B.2: Top 9 retrieved sketches in Flickr15k sketch set. The SVM-PH-
HOG-flip method of Chapter 5 is used for retrieval. Flickr15k contains 330
sketches evenly allocated in 33 categories.
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