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ABSTRACT

We describe a face detection algorithm based on support vector machine (SVM). The algorithm
consists of two–steps. The first step is a skin detection model which serves as a platform to
reduce the searching space for potential face candidates. The second step reduces the computa-
tional complexity of the SVM architecture by projecting the image signals into a face subspace,
constructed under ICA framework, to reduce the dimensionality of the problem while preserv-
ing the unique facial features. Experiments were conducted using various real world data and
results are reported.
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Chapter 1

Introduction

Computer vision, in general, aims to duplicate human vision, and traditionally, has been used in
performing routine and repetitive tasks, such as classification in massive assembly lines. Today,
researchers are trying to build intelligent machines that have different functions. Building
machines with the faculty of vision is probably one of the most challenging problems human
beings strive to solve. In this aspect, the human face is one of the most fascinating of all objects:
powerful, expressive, and highly variable. At the same time, it is a highly specialised part of the
body and the most convincing proof of an individual’s identity. Despite this fact, one can list
several relevant applications, such as face recognition, computer human interaction, and crowd
surveillance, where all of these applications require face detection as a pre-processing step to
obtain the “face object”. In other words, many of the techniques that are proposed for these
applications assume that the location of the face is pre-identified and is available for the next
step.

1.1 Motivation

Face detection is one of the tasks that human vision can do without much effort. However, for
machines, such an effortless task becomes challenging as face appearance depends mainly on
the viewing conditions, the geometrical sensors and the photometrical parameters. Although
the computer vision community started to pay attention to face processing three decades ago,
there is as yet no solution with performance comparable to humans both in precision and speed.

In this thesis, we are mainly interested in the face detection problem, such as how to find -
based on visual information - all the occurrences of faces regardless of who the person is. High
precision is now technically achieved by building systems that learn from a lot of data in order
to minimise errors on test sets. In most cases, the increase in precision is achieved at the
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expense of a degradation in run-time performance. However, in major applications not only
high precision is demanded, the computation resource also has to be constrained at a reasonable
cost.

1.2 Challenges

A general definition of face detection can be stated as identification of all regions that contain 
a face, in a still image or image sequence, independent of any three dimensional transformation 
of the face and lighting conditions of the scene. This statement implies an enormous statistical 
variation among all possible face images under all viewing conditions, resulting to the query: 
what is the set of all possible face images under all viewing conditions? 

Pose Variation

Slight changes in the face’s position often leads to large changes in the face’s appearance. This
is mainly because of the 2D transformations such as translations and rotations in the image
plane. As faces are considered as highly semi-rigid 3D objects, rigid perspective transformations
from 3D objects to 2D image plane cause various distortions to their appearances.

Lighting Condition

The variability in faces due to differences in illumination is usually dramatic. This not only lead 
to changes in contrast, but also in the configuration of the shadow. Moses et al. [56] have 
observed that the variability in the images of a given face due to illumination changes is greater 
than that from person to person under the same lighting. Although indoor lighting conditions 
can be well controlled and hence face detectors achieve very high performance in such conditions, 
lighting conditions for outdoor scenes are impossible to control, resulting in strong variations in 
facial appearances.

Shape Variation

Human faces are subject to various shapes due to physiognomy, ethnicity, physiological be-
haviour, and facial expressions. The shapes can be classified as either global shape variations
(height, elongation, etc.) or local shape variations (nose and mouth shape, distance between
the eyes, etc.). Such variability further complicates the task.

To tackle these problems, many face detection methods proposed the use of the pose and inten-
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sity information to model and learn different representations of faces under varying conditions.
The main drawback of these approaches is that in order to detect faces seen in a particular pose
and lighting condition, the faces must have been seen previously under the same conditions.
Clearly, this makes the decision very complex and the visual selection task quickly gets out of
hand. Hence, a detection algorithm should deal with as many of these sources of variability
as possible. This is roughly equivalent to using a larger training set containing many training
examples generated from real examples by changing the global conditions. It is clear that a
larger training set generally improves the performance of a face detection algorithm, but it also
usually increases the processing time for training and classification. Therefore, reducing the
variability and reducing the size of the training set and complexity of the decision boundary
should be balanced in order to achieve reasonable performance.

1.3 Thesis Outline

A comprehensive review of the works regarding face detection covered in literatures is given in
Chapter 2. In Chapter 3, algorithms for facial feature extraction are described. Five different
skin models are reviewed and compared in different colour spaces together with experimental
results. The purpose of skin colour detection is to condense the searching space for potential
face candidates and hence to reduce the system latency. To further speed up the system,
meaningful facial features are extracted from original high dimensional image pixels using PCA
and ICA frameworks. Unlike other approaches, the differences between PCA and ICA models
are highlighted from the statistical point of view while experimental results follow subsequently.
Chapter 4 describes the learning of face models using the SVM model together with various
testing results. Finally, Chapter 5 concludes the entire study and highlights the future research
direction.
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Chapter 2

Towards Face Detection

Early efforts in face detection have dated back as early as the beginning of the 1970s, when
simple heuristic and anthropometric techniques were used under various assumptions such as
plain background, frontal face, etc. As a result of the rigidness of these systems, any changes
in image conditions would mean fine–tuning of the system configuration, if not a complete re–
design. These problems inhibited the growth of research interest until the 1990s, when practical
face recognition and video coding systems started to become a reality. Over the past decade,
there has been a great deal of research interest spanning several important aspects of face
detection, including more robust segmentation schemes, employment of statistics and neural
networks for face detection and recognition, and advanced feature extractors.

Face detection techniques require a priori information of the face, and can be effectively or-
ganised into three broad categories distinguished by their different approaches to utilising face
knowledge. The techniques in the first category make explicit use of face knowledge and follow
the classical detection methodology in which low level features are derived prior to knowledge–
based analysis. The apparent properties of the face such as skin colour and face geometry are
exploited at different levels. The aim is to find the structural features that exist invariant to
the pose, viewpoint, or lighting conditions, and then use these features to locate faces. Since
features are the main ingredients, these techniques are termed as feature–based approach. The
techniques in the second group encode human knowledge of what constitutes a typical face
by using rule–based methods where the rules capture the relationships between facial features.
These methods are designed mainly for face localisation and are known as knowledge–based
methods. The last but not the least category addresses face detection as a general pattern
recognition problem. Classifications of face group are directly performed by using image–based
representations of faces with training algorithms without feature derivation and analysis. Unlike
the feature–based and knowledge–based approaches, these relatively new techniques incorporate
face knowledge implicitly into the system through mapping and training schemes.
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2.1 Feature–Based Approach

The development of the feature–based approach can be divided into three areas: low–level
analysis, feature analysis and active shape models. Given a typical face detection problem, the
objective of low–level analysis is to segment the potential face region by using the visual features
from the pixel properties such as grey–scale and colour. However, features generated from this
analysis are always ambiguous. Therefore, the visual features are organised into a more global
concept of face and facial features in feature analysis stage by using prior knowledge of face
geometry. Through feature analysis, feature ambiguities are reduced and locations of the face
and facial features are determined. The last area involves the use of active shape models. For
instance, point distributed models (PDM) have been developed for the purpose of complex and
non–rigid feature extraction such as eye pupil and lip tracking.

2.1.1 Low–Level Analysis

Edges

The application of edge representation in the face detection problem can be dated back as early 
as the work by Sakai et al. [75]. By analysing line drawings of the faces from photographs, the 
facial features are located. Craw et al. [15] later proposed a hierarchical framework based on 
Sakai et al.’s work to trace a human head outline. More recent examples of edge–based face 
detection and facial feature extraction techniques can be found in [16, 80].

Edge detection is the foremost step in deriving edge representation. So far, many different 
types of edge operators have been applied. Among them, the Sobel operator was the most 
common filter being used. In [23] the MarrHildreth edge operator was used. A variety of first and 
second derivatives (Laplacian) of Gaussians have also been used in other methods. For instance, 
steerable and multi–scale orientation filters are used in [20]. The steerable filtering consists of 
three sequential edge detection steps, which include detection of edges, determination of the filter 
orientation of any detected edges, and stepwise tracking of neighbouring edges using the 
orientation information. The algorithm has allowed an accurate extraction of several key points 
in the eye.

In an edge–detection–based approach to face detection, edges need to be labelled and matched 
to a face model in order to verify correct detections. In [23] Govindaraju proposed an algorithm 
that labels edges as the left side, hairline, or right side of a front view of a face. The labelled 
components are then combined to form possible face candidate locations and matched to a
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facial model based on a cost function using the golden ratio1:

height

width
≡ 1 +

√
5

2
(2.1)

By testing this algorithm on a set of 60 images with complex backgrounds containing 90 faces,
the system achieves 76% detection rate with an average of two false alarms per image.

Grey Information

Besides edge representation, the grey information within a face is also frequently used since 
facial features such as eyebrows, pupils, and lips appear generally darker than their surrounding 
facial regions. This prior knowledge of human faces can be exploited to differentiate various facial 
parts. In [24] the input images are first enhanced by contrast–stretching and grey–scale 
morphological routines to improve the quality of local dark patches and then the local grey 
minima within segmented facial regions are searched for local facial features. The extraction of 
dark patches is achieved by simply thresholding. In contrast, Hoogenboom and Lew [29] 
proposed an algorithm by using local maxima to indicate the bright facial spots such as nose tips. 
The local maxima are defined as bright pixels surrounded by eight dark neighbours. The 
detection points are then aligned with feature templates for correlation measurements.

On the other hand, Yang and Huang [97] explored the grey–scale behaviour of faces in mosaic 
(pyramid) images by using the fact that the macroscopic features of the face will disappear when the 
resolution of a face image is reduced gradually. They have observed that the face region will become 
uniform at low resolution. Based on this observation Yang proposed a hierarchical face detection 
framework. Starting at low resolution images, face candidates are established by a set of rules that 
searches for uniform regions. The face candidates are then verified by the existence of prominent facial 
features using local minima at higher resolutions. Their technique is later incorporated into a system 
for rotation invariant face detection by Lv et al. [51].

Colour

Compared with grey information, colour is a more powerful means for discerning object ap-
pearances. From the research works by McKenna et al. [53] it was found that different human 
skin colour tends to form a tight cluster in colour space even when faces of difference races are 
considered. This means colour composition of human skin differs little across individuals.

Among various colour spaces, the RGB colour space is one of the most widely used. Since the
luminance change will cause large variation in skin appearance, normalised RGB colours are
generally preferred for skin colour detection [27, 81, 83]. The normalised colours can be derived

1An aesthetically proportioned rectangle used by artists.
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from the original RGB components as follows:

r =
R

R + G + B

g =
G

R + G + B

b =
B

R + G + B
. (2.2)

For a colour histogram based on r and g, it has been shown that the skin colour only occupies
a small cluster in the histogram. Therefore, the likelihood of a pixel belonging to face region
can be deduced by comparing its colour information with respect to the r and g values of the
face cluster.

Besides rgb colour model, several other alternative models are also actively being used in the 
face detection research. For instance, the HSI colour representation has been shown to have 
advantages over other models in giving large variance among facial feature colour clusters. 
Hence this model is used to extract facial features such as lips, eyes, and eyebrows. It is also 
widely used in face segmentation schemes [68, 17].

On the other hand, it is found that the I–component in the YIQ colour space could enhance 
the skin region of Asians [16]. Other colour models applied to face detection include HSV [85], 
YCrCb [1, 76], YUV, CIE–xyz [11], L*a*b* [46], and L*u*v* [28].

A comparative study of several widely used colour spaces for face detection was presented by 
Terrilon et al. [87]. In their study, they compared normalised TSL (tint–saturation–luminance), 
rg and CIE–xy chrominance spaces, and CIE–DSH, HSV, YIQ, YES, CIE–L*u*v*, and CIE 
L*a*b* chrominance spaces. In each colour space, the skin colour distributions are modelled 
as either a single Gaussian or a Gaussian mixture density model. They extracted Hu’s mo-
ments [30] as features and trained a multi–layer perceptron neural network to classify the face 
candidates. In general, they showed that skin colour in normalised chrominance spaces can be 
modelled with a single Gaussian and performs very well, while a mixture–model of Gaussians 
is needed for the unnormalised spaces. In their face detection test, the normalised TSL space 
provided the best results, but the general conclusion was that the most important criterion for 
face detection is the degree of overlap between skin and non–skin distributions in a given space, 
which is highly dependent on the number of skin and non–skin samples available for training.

Texture

Human faces have a distinct texture that can be used to separate them from other objects.
Augusteijn and Skufca [2] presented a piece of work showing that human faces can be detected
through the identification of face–like textures. The textures are computed using second–
order statistical features on sub–images of 16×16 pixels. Three types of textures are computed
including hair, skin and others. Then a cascade correlation neural network is used for supervised
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texture classification together with a self–organising map to form clusters of different texture
classes. When a face candidate is presented to the system, votes of the occurrence of hair and
skin textures are used to infer the presence of a face. However, they only reported the results
of texture classification, not face detection.

Similar to [2], Dai and Nakano also applied the same texture model to face detection [16]. 
However, they incorporated colour information together with the face–texture model. They 
designed a scanning scheme for face detection in colour scene in which the orange–like parts 
including face areas are enhanced. They reported that their approach has the advantage in 
detecting faces that are not upright or have features such as beards and glasses. The detection 
rate is 100% for a test set of 30 images with 60 faces.

Geometric Measures

Besides edge, grey information, colour and texture, the geometric features of human faces have 
also been explored. As early as the work in Reisfeld and Yeshurun [71], a generalised symmetry 
operator that is based on edge pixel operation is introduced to local facial features by taking the 
fact that facial features are symmetrical in nature. Given an image, the symmetry magnitude is 
assigned at every pixel location based on the contribution of surrounding pixels. By using this 
symmetry magnitude map, the system achieves 95% success rate in detecting eyes and mouths 
in a database consisting of various backgrounds and orientations.

Later Lin and Lin [47] proposed a dual–mask operator that is similar to Reisfeld and Yeshurun [71] 
operator but with less complexity by exploiting the radial symmetry distribution on bright and dark 
facial parts. Different from Reisfeld and Lin, Tankus et al. [85] proposed a new attentional operator 
based on smooth convex and concave shapes by making use of the derivative of gradient orientation 
with respect to the y–direction which is termed Y–Phase. From their experimental results, it was shown 
that the Y–Phase has a strong response at the negative x–axis for concave and convex objects 
(paraboloids). Since facial features generally appear to be parabolic, their Y–Phase response will also 
give a strong response at the x–axis. They also proved that Y–Phase is invariant under a very large 
variety of illumination conditions and is insensitive to strong edges from non–convex objects and 
texture backgrounds.

2.1.2 Feature Analysis

Features generated from low–level analysis are likely to be ambiguous. For instance, segmenting
facial regions using a skin colour model will always detect background objects of similar colour.
To reduce this ambiguity, many face detection systems have employed the prior knowledge of
face geometry to characterise and verify these features. One common approach is to perform
sequential feature searching based on the relative positioning of individual facial features, and to
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enhance the confidence of a feature’s existence if nearby features are detected. Starting with the
determination of prominent facial features, the feature searching techniques try to detect other
less prominent features by using anthropometric measurements of face geometry. For instance,
the hypothesis of a pair of symmetric dark regions found in the face area may represent the
eyes on the face, and subsequently increase the confidence of a face existence. Because of the
distinct side–by–side appearance of human eyes, a pair of eyes is the most commonly applied
reference feature among all the facial features. Other features include a main axis of the face,
top of the head and mouth, etc.

Besides sequential feature searching, many methods that combine multiple facial features have
also been proposed for face detection or localisation. Most of them initially utilise global features
such as skin colour, size and shape to find the possible face candidates and then verify these
candidates using local detailed features such as eyebrows, nose and hair. A typical approach
begins with the detection of skin–like regions and then groups the skin–like pixels together using
connected component analysis or clustering algorithms. If the shape of a connected region has
an elliptic or oval shape, it becomes a face candidate for further verification using other local
features.

A typical feature searching and multiple facial feature analysis example could be found in the 
work of Jeng et al. [37]. The system detects various facial features based on anthropometric 
measures, and predicts the presence of a face based on the existence of these features. The 
system first searches for possible locations of the eyes in binarised pre–processed images. Then 
it goes on to search for a nose, a mouth, and eyebrows at each possible eye position. Each facial 
feature has an associated evaluation function, which is used to determine the final most likely 
face candidate. Finally, each facial feature is weighted according to their facial importance with 
manually selected co–efficients as follows:

Eface = 0.5Eeye + 0.2Emouth + 0.1EReyebrow + 0.1ELeyebrow + 0.1Enose (2.3)

where E represents existence of particular facial feature. 86% detection rate was reported on
a data set of 114 test images taken under controlled imaging conditions, but with subjects
positioned at various directions with a cluttered background.

Wu et al. [96] presented a face detection method in colour images using fuzzy theory. In their 
system, two fuzzy models are used to describe the distributions of skin and hair colour in CIE 
XYZ colour space. The appearances of faces in images are represented by five head–shape models 
(one frontal and four side–views). Each shape model is a 2D pattern of m × n square cell assigned 
with two properties: the skin proportion and the hair proportion where the portions indicate the 
ratios of the skin/hair area within the cell to the area of the cell. For each input image, each pixel 
is classified as hair, face, hair/face, and hair/background based on the distribution models, 
thereby segmenting the image into skin–like and hair–like regions. The skin–like and hair–like 
regions are compared with the head–shape models, and are labelled as face candidates if they are 
similar. The eye–eyebrow and nose–mouth features are then extracted from each face candidate 
using horizontal edges for further verification.
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A imilar pproach s roposed y obottka nd itas 83] or ace ocalisation sing hape and colour. In their 
system, skin–regions are first segmented in HSV colour space. Then connected component analysis is 
applied for region growing at a coarse resolution where the best fitted ellipse is computed for each 
connected component using geometric moments. Connected components that are well approximated 
by an ellipse are selected as face candidates. These candidates are verified by searching for facial 
features such as eyes and mouths based on the observation that they are darker than the rest of a face. 
Later, Terrillon et al. [86] proposed a similar method where a Gaussian skin colour model is first used 
to classify skin pixels and for each connected component, a set of 11 lowest–order geometric moments 
are computed using Fourier and radial Mellin transforms to characterise its shape. For detection, a 
neural network is trained with the extracted geometric moments. A detection rate of 85% was reported 
from their experiments based on a test set of 100 images.

Recently, Smeraldi et al. [82] proposed an algorithm based on eye movements. In the system, 
they constructed a template of the search targets (the eyes) by averaging Gabor responses from a 
retinal sampling grid centered on the eyes of the subjects in the training set. Six orientations and 
five different frequencies are employed for feature extraction. During the detection of the eyes, a 
saccadic search algorithm is applied. Initially, the algorithm randomly places the sampling grid 
in the image and subsequently moved it to the position where the Euclidian distance between the 
node of the sampling grid and the node in the search target is the smallest. The grid is moved 
around until the saccades become smaller than a threshold. If the search started at a blank area 
in the image where no target can be found, a new random position is tried. From a set of 800 
frontal view face images, 84% correct detection of the eyes was reported.

Almost at the same time, Maio and Maltoni [52] proposed a two–stage face detection system 
using Hough transform. Using a gradient–type operator over local window (7 × 7 pixels), the 
input image is first converted to a directional image from which the Hough transform is applied 
to search for ellipses. The selected face candidates are then matched with a set of 12 binary 
templates for verification. Fig. 2.1 shows their proposed system. The proposed system functions 
in real time and a correct detection in 69 out of 70 test images was reported with no false alarms, 
where the test images consist of single faces of varying sizes with complex backgrounds.

2.1.3 Active Shape Models

Different from the techniques mentioned in the previous sections, active shape models depict
the actual physical appearance of object and hence give higher–level object features. The most
well–known face detection system using active shape model is developed by Cootes et al. [34].
They proposed the use of a new generic flexible model, which they termed Point Distribution
Models (PDM) to provide an efficient interpretation of the human face. The model is based on
a set of labelled points that are only allowed to vary to certain shapes according to a training
procedure.
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Figure 2.1: The face detection system re–produced from Maio and Maltoni [52].

PDM is a compact parameterised description of the shape based upon statistics in which the
contour of the object shape is represented by a set of labelled points. Given a training set con-
sists of objects of different sizes and poses, variations of these labelled points are parameterised
via training. By using principal component analysis (PCA), variations of the features are then
constructed as a linear flexible model. The model comprises the mean of all the features in the
sets and the principal modes of variation for each point. Let x represents a point on the PDM,
and x̄ is the mean feature in the training set for that point, then:

x = x̄ + Pv (2.4)

where P = [p1,p2, · · ·pt] is the matrix of the t most significant variation vectors of the covari-
ance of deviations, and v is the weight vector for each mode.

In [45], Lanitis et al. developed a face PDM as a flexible model. The model depicts the global 
appearance of a face that includes all the facial features such as eyebrows, nose, and eyes. They 
manually labelled 152 control points and trained these points with 160 training face images to 
obtain a face PDM. They showed that the model can approximate up to 95% of the face shapes 
in the training set by using only 16 principal weights. To fit a PDM to a face, the mean shape 
model is first placed near the face, and then each point is moved towards its corresponding
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boundary point by employing a local grey–scale search strategy. During the deformation, the
shape is only allowed to change in a way which is consistent with the information modelled
from the training set.

The advantage of face PDM is that only compact parameterised points are sufficient to describe a 
face shape. In their subsequent work, Lanitis et al. [44] have incorporated a genetic algorithm 
(GA) and multi–resolution approach to address the problem in multiple face candidates. They 
also showed that the global characteristic of the model allows all the features to be located 
simultaneously and thereby removes the need for feature searching. Furthermore, the occlusion 
of a particular feature does not pose a severe problem since other features in the model can 
still contribute to a global optimal solution.

2.2 Knowledge–Based Methods

In this approach, face detection methods are developed based on the rules derived from human
faces. The rules describe the features of a face and their relationships by using the researcher’s
knowledge of human faces explicitly. For instance, a face often appears in an image with two
eyes that are symmetric to each other, a nose, and a mouth with more darker red colour than
other components of the face. These relationships can be represented by their relative distances
and positions. Usually, different facial features are extracted first and then the face candidates
are identified based on the coded rules. A verification process is usually applied to reduce false
detection.

The main challenge with this approach is the difficulty in translating human knowledge into
well–defined rules. If the rules are too restrictive, it might be too difficult for faces to pass all the
rules for detection. If the rules are too general, they may give many false positives. In general,
using heuristics about faces work well in detecting frontal faces in uncluttered scenes, but they
are too difficult to be extended to detecting faces in different poses since it is challenging to
enumerate all possible cases.

One of the early works on knowledge–based face detection is presented by ang and Huang [97]. 
Their hierarchical knowledge–based system consists of three levels of rules. By scanning a 
window over the input image, a set of rules are applied to identify the possible face candidates 
at each location. The rules at the highest level are general descriptions of what a face looks 
like while rules at lower levels rely on details of facial features. Fig. 2.2 depicts an example of 
the multi–resolution hierarchy of images created by averaging and sub–sampling. Examples of 
rules used in the lowest resolution (Level 1) include: “the central part of the face (the dark 
shaded parts in Fig. 2.3) has four cells with a basically uniform intensity”, “the upper–round 
part of a face (the light shaded parts in Fig. 2.3) has a basically uniform intensity”, and “the 
differences between the average grey values of the central part and the upper–round part is 
significant”. Once the face candidates are searched at the lowest resolution, they are further
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Figure 2.2: he multi–resolution hierarchy images created by averaging and sub–sampling, re–
produced from ang and Huang [97]. (a) Original image. (b) n=4. (c) n=8. (d) n=16. From left 
to right, the figure shows the original image and lower resolution images in which the intensity of 
each pixel is replaced by the average intensity of n × n pixels.

Figure 2.3: Facial region used in knowledge–based top–down method, re–produced from Yang 
and Huang [97].

processed at finer resolutions. At Level 2, local histogram equalisation is performed on the
selected face candidates followed by edge detection. Candidates that passed Level 2 are finally
examined at Level 3 with another set of rules in response to the facial features of eyes and
mouth. By evaluating the system on a test set of 60 images, the system correctly located faces
in 50 test images while there are 28 images in which false alarms appeared. Although the
system did not result in high detection rate, the idea of using multi–resolution to reduce the
required computations has been used in later face detection works [29].

Following Yang and Huang’s work [97], [29] presented a similar rule–based face localisation 
method. First, facial features are detected with a projection method that locates the 
boundary of a face. Let I(x, y) be the intensity value of an m × n image at
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position (x, y), the horizontal and vertical projections of the image are defined as:

HI(x) =
n∑

y=1

I(x, y)

V I(y) =
m∑

x=1

I(x, y). (2.5)

Once the horizontal projection of the input image is obtained, the two local minima are de-
termined by detecting abrupt changes in HI. The two local minima are assumed to correspond
to the left and right side of the head. Similarly, the local minima are detected in the vertical
projection which corresponds to the locations of mouth lips, nose tip and eyes. These detected
facial features constitute a face candidate. Consequently, a set of rules detecting eyes, nose and
mouth are applied to validate the candidate. The proposed method has been tested using a
set of frontal faces extracted from the European ACTS M2VTS (MultiModal Verification for
Teleservices and Security Applications) database. The database contains 37 different people
and each image sequence contains only one face in a uniform background. The reported detec-
tion rate was 86.5%. However, it is difficult to detect a face in a complex background by using
the horizontal and vertical projections and this method cannot detect multiple faces. Fig. 2.4
shows examples of this method.

Figure 2.4: The horizontal and vertical projections of the input images, re–produced from [29]. It 
is possible to detect a single face by searching the peaks in horizontal and vertical projections as 
in (a). However, this method is difficult to detect a face in a complex background as shown in (b) 
and cannot detect multiple faces as shown in (c).

2.3 Image–Based Approach

It has been shown in the previous sections that the main problem in face detection by explicit
modelling of facial features is the unpredictability of face appearance and complex environ-
mental conditions. Although some of the recent researches have tackled the problem of unpre-
dictability to some extent, most are still limited to quasi–frontal faces. The need for techniques
to perform face detection in more hostile scenarios has inspired a new research area in which
face detection is treated as a pattern recognition problem. By treating the problem of face
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detection as one of learning to recognise face pattern from examples, the specific application of
face knowledge is avoided. This eliminates the potential modelling errors due to incomplete or
inaccurate face knowledge. The fundamental approach of face pattern recognition is to classify
examples into face and non–face prototype classes via a training process. The simplest image–
based approach is template–matching [21, 40] but this approach does not perform as well as
those using more complex techniques.

Most of the image–based approaches apply a window scanning technique for detecting faces.
This scanning algorithm performs an exhaustive search of the input image for candidate face
positions at all scales. Almost all the image–based systems have variations in the implementa-
tion of this algorithm. Depending on the methods and computational efficiency, the size of the
window, the sub-sampling rate, and the step size vary across different systems.

In the following sections we divided the image–based approach into linear subspace methods,
neural networks, and statistical approach. In each section, some representative methods are
presented.

2.3.1 Linear Subspace Methods

Images of human faces lie in a subspace of the overall image space. To represent this subspace
several methods have been explored in the literature including principal component analysis
(PCA), linear discriminant analysis (LDA), and factor analysis (FA).

In the late 1980s, Sirovich and Kirby [81] developed a technique using PCA to efficiently represent 
human faces. The technique searches the principal components of the distribution of faces, which are 
expressed in terms of eigenvectors (commonly referred to as eigenfaces), for a given set of face images. 
Each individual face of the face set can then be approximated by a linear combination of a few largest 
eigenvectors using appropriate weights. Turk and Pentland [89] later extended this technique for face 
recognition by exploiting the distinct nature of the weights of eigenfaces in individual face 
representation. Since the re–constructed face is an approximation, a residual error is defined as a 
measure of “faceness”. They termed this residual error as “distance–from–face–space” (DFFS), which 
gives a good indication of face existence. The base procedures of their algorithm are as follows:
Given a data set of n face images, Γ1, Γ2, · · · , Γn, the average face is defined by:

Ψ =
1
n

n∑

i=1

Γi. (2.6)

By subtracting the average face from each image, we obtain:

Φi = Γi −Ψ (2.7)

Let D = [Φ1Φ2 . . . Φn] and C = DDT . The eigenvectors u i of C are called the principal
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components (eigenfaces), which span the subspace called face space. An input image Φ can be
projected onto this face space by

wk = ut
kΦ, k = 1, . . . m, (2.8)

where m is the number of principal components selected to span the face space. Since the
principal components with small corresponding eigenvalues do not carry significant information
in this representation, m is usually selected to be much smaller than n. The re–constructed
image can be obtained by

Φr =
m∑

k=1

wkuk. (2.9)

The re–construction error ε = ‖Φ− Φr‖2 is the DFFS.

Pentland et al. [65] later proposed a facial feature detector using DFFS generated from so–called 
eigenfeatures (eigeneyes, eigennose, eigenmouth). The eigenfeatures are obtained from various 
facial feature templates sampled from a training set of 128 faces. Since features of different 
discrete views were used during the training phase, the detector has a better ability to account 
for features under different viewing angles. The performance of the eye locations was reported to 
be 94% with 6% false positive in a database of 7,562 frontal face images on a plain background. A 
slightly reduced, but still accurate performance for nose and mouth locations was also shown in 
[52]. The DFFS measure has also been used for facial feature detection in combination with 
Fisher’s linear discriminant for face and facial feature detection [66].

Later, Moghaddam and Pentland [55] have further developed this technique within a proba-
bilistic framework. As the orthogonal complement of face space is normally discarded when 
using PCA representation, Moghaddam and Pentland found that this leads to the assumption 
that the face space has a uniform density. Therefore they proposed a maximum likelihood 
detector which takes into account both the face space and its orthogonal complement to handle 
arbitrary densities. They reported a 95% detection rate on a set of 7,000 face images when 
detecting the left eye. A similar approach was also presented in [50] in which case PCA is 
applied for modelling both the face class and the pseudo–faces (non–faces, but face–like pat-
terns) class, together with matching criteria based on a generalised likelihood ratio. In [54] 
Meng and Nguyen used PCA to model both faces and background clutter (an eigenface and an 
eigenclutter space).

Although PCA is an intuitive and appropriate way of constructing a subspace to represent 
an object class in many cases, it is not necessarily optimal for modelling the manifold of face 
images. This inspired another point of view that face space might be better represented by 
dividing it into sub–classes. Several methods have been proposed along this direction, most of 
which are based on mixtures of multi–dimensional Gaussians. This technique was first applied 
for face detection by Sung and Poggio [84]. Their method consists mainly of four steps:

1. The input sub–image is pre–processed by re–scaling it to 19× 19 pixels, applying a mask
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Figure 2.5: Face and non–face Gaussian clusters, re–produced from Sung and Poggio [84]. A 
set of Gaussians are used to estimate the density function for face and non–face patterns. The 
centers of these Gaussians are shown on the right.

for eliminating near–boundary pixels and subtracting a best–fit brightness plane from the
unmasked window pixels, and finally applying histogram equalisation.

2. A distribution–based model of canonical face– and non–face patterns is constructed. By
using an elliptical K–means clustering algorithm with an adaptively changing normalised
Mahalanobis distance metric, 12 multi–dimensional Gaussian clusters with a global mean
and a covariance matrix were constructed, of which six represent face, and six represent
non–face pattern prototypes as shown in Fig. 2.5.

3. Two values are computed from each cluster. One is a Mahalanobis–like distance between
the new image and the prototype centroid, defined within the subspace spanned by the
75 largest eigenvectors of the prototype cluster, while the other is the Euclidean distance
from the new image to its projection in the subspace. Thus a 24–dimensional image
measurement is computed. Fig. 2.6 shows the distance measures used in the system.

4. A multi–layer perceptron (MLP) is trained for face and non–face classification from the
24–dimensional image measurement vector. The MLP is not fully connected, but exploited
some prior knowledge of the domain. The training set consists of 47,316 image, where
4,150 are examples of face patterns.

For face detection, a new image is first pre–processed through step 1 and 3, and then classified
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Figure 2.6: The distance measures used by Sung and Poggio, re–produced from their work [84]. 
Two distance metrics are computed between each input test pattern and the prototype clusters.
(a) A set of 12 distances between the input pattern and the 12 cluster centroids are computed.
(b) Each distance measurement between the input pattern and a cluster centroid is a 2D value. 
D1 is the Mahalanobis distance between the input pattern’s projection and the cluster centroid 
in a subspace spanned by the 75 largest eigenvectors. D2 is the Euclidean distance between 
the input pattern and its projection in the subspace. Therefore, the distance measurement for 
each input pattern is a vector of 24 values.

using the MLP.

In [27], a similar approach to that of Sung and Poggio was explored by using grey–level features 
in combination with texture features. A more computationally efficient method was proposed in 
[32]. Another variation of this approach was presented in [25] where linear discriminant analysis 
is applied for feature selection before training the neural network classifier. A similar framework 
has also been proposed by Rajagopalan et al. [69]. They presented a new clustering algorithm 
using higher order statistics for modelling the face and non–face classes and reported good 
results.

In [97], the Fisher’s Linear Discriminant (FLD) is used to project samples from the high dimen-
sional space to a lower dimensional feature space. From their experiments, the FLD method 
outperforms the widely used eigenface method. One possible explanation is that FLD provides 
a better projection than PCA for pattern classification since it aims to find the most discrimi-
nant projection direction, and hence, the projected subspace may be superior to the eigenface 
projection. In their system, the training face and non–face samples are decomposed into several 
sub–classes using Kohonen’s Self Organizing Map (SOM). Fig. 2.7 shows a prototype of each face 
class. Then the within–class and between–class scatter matrices are computed, thereby gener-
ating the optimal projection based on FLD. The density function for each sub–class is modelled 
as a Gaussian distribution whose parameters are estimated using maximum–likelihood. For face 
detection the input image is scanned with a rectangle window in which the class–dependent 
probability is computed. The maximum–likelihood decision rule is used to infer the presence
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Figure 2.7: Prototype of each face class used in SOM, re–produced from Yang et al. [97].

of a face or not. 93.6% detection rate was reported on a set of 225 test images with 619 faces.

2.3.2 Neural Networks

Neural networks are popular techniques in the area of pattern recognition. Complex learning
algorithms, auto–associative and compression networks, and networks evolved with genetic
algorithms are all examples of the widespread use of neural networks. For face recognition this
implies that neural approaches might be applied for all parts of the system, and this had indeed
been shown in several papers [6, 38].

The first application of neural networks to face detection problems can be traced back as early as 
the work in [38] based on MLPs, where promising results were reported on fairly simple data sets. 
A more advanced neural approach that reported results on a large, difficult data set was by 
Rowley et al. [73]. They designed a retinally connected neural network that incorporates face 
knowledge implicitly. Fig. 2.8 depicts their system. The neural network is designed to look at 
windows of 20 × 20 pixels (thus 400 input units). There is one hidden layer with 26 units, where 4 
units look at 10 × 10 pixel sub–regions, 16 look at 5 × 5 sub–regions, and 6 look at 20 × 5 pixels 
overlapping horizontal stripes. The input window is pre-processed through
lighting correction (a best fit linear function is subtracted) and histogram equalisation. This
pre-processing method was adopted from Sung and Poggio's system [84] mentioned earlier.
One problem that arises with window scanning techniques is that of overlapping detections.
Rowley et al. deal with this problem through two heuristics::

1. Thresholding: the number of detections is counted in a small neighbourhood surrounding
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the current location, and a face is detected at this location if the number is higher than
a pre–defined threshold.

2. Overlap elimination: when a region is classified as a face according to thresholding, then
overlapping detections are likely to be false positives and thus are rejected.

For further improvements, they trained multiple neural networks and combined the output with 
an arbitration strategy (ANDing, ORing, voting, or a separate arbitration neural network). 
Later, this algorithm is applied in a person tracking system in [77] and for initial face detection 
in the head tracking system of La Cascia et al. [43].

Recently, Rowley et al. [74] improved this system by combining with a router neural network to 
detect faces at all angles in the image plane. In this system, a fully connected MLP with one 
hidden layer was constructed with 36 output units (one unit for each 10◦ angle) to decide the 
angle of the face. 79.6% detection rate was reported in two large data sets with a small number of 
false positives.

On the other hand, Feraud et al. [21] suggested a different neural approach, based on a 
constrained generative model (CGM). Their CGM is an auto–associative fully connected MLP 
with three layers of weights and 300 (15 × 20) input and output units (corresponding to the size 
of the image). The first hidden layer has 35 units, while the second hidden layer has 50 units. The 
idea behind this model is to force a non–linear PCA to be performed by modifying the projection 
of non–face examples to be close to the face examples. Classification is obtained by considering 
the re–construction error of the CGM (similar to PCA, explained in the previous section).

During the training phase, Feraud et al. used a training algorithm based on the bootstrap 
algorithm of Sung and Poggio [84] and also a similar pre–processing method. To further control 
the learning process, they used an additional cost function based on the minimum description

Figure 2.8: The system architecture of Rowley et al., re–produced from their work in [73].
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length (MDL). More recently, they applied the system further to the problem of finding face 
images on the web in [22] by including colour information and multiple views.

In Lin et al. [48], a fully automatic face recognition system was proposed based on probabilistic 
decision–based neural networks (PDBNN), which is a classification neural network with a hier-
archical modular structure. The network is similar to the DBNN [42], but it has an additional 
probabilistic constraint. The network consists of one subnet for each object class combined with 
a winner–take–all strategy. Thus, the network has only one subnet representing the face class. 
The learning rules are similar to DBNN, which means that the teacher only tells the correctness 
of the classification (as opposite to exact target values) by using a LUGS (locally unsupervised 
globally supervised) learning technique. With LUGS, each subnet is trained individually with 
an unsupervised training algorithm (K–mean and vector quantisation or the EM algorithm). 
The global training is performed to fine–tune decision boundaries by employing reinforced or 
anti–reinforced learning when a pattern in the training set is misclassified. The system used 
images from the MIT data set [72] but scaled them down to approximately 46 × 35, and a 
12 × 12 window is used to scan through the images with 1 pixel search step.

2.3.3 Sparse Network of Winnows

In [72], Roth et al. proposed a new learning architecture called SNoW (sparse network of 
winnows). SNoW is a sparse network of linear functions that utilises the Winnow update rule 
[49]. It is specially tailored for learning in domains in which the potential number of features 
taking part in a decision is very large or may be unknown. In [72], SNoW is a neural network 
consisting of two linear threshold units (LTU) where one unit represents the face class while the 
other represents non–faces. The two LTUs operate on an input space of Boolean features. The 
system derives features from 20 × 20 input windows in the following way: for 1 × 1, 2 × 2, 4 × 4, 
and 10 × 10 subwindows, compute position × intensity mean × intensity variance. By 
discretising the mean and variance into a pre–defined number of classes, the Boolean feature is in 
a 135,424 dimensional feature space. The LTUs are separated from each other and are sparsely 
connected over the feature space. The system is trained with a simple learning rule that promotes 
and emotes eights n ases f isclassification. imilar o he reviously entioned ethods, 
Roth t l. 72  se he ootstrap ethod f ung nd oggio 84] or enerating raining 
samples nd re–process ll mages ith istogram qualisation.

2.3.4 Statistical Approach

Apart from sub–linear space and neural networks, there are also several statistical approaches 
to face detection, which includes systems based on information theory, support vector machines 
and Bayes’ decision rule. In [14], Colmenarez and Huang proposed a system based on Kullback 
relative information (Kullback divergence), which is based on an earlier work of maximum

26



likelihood face detection [13]. This divergence is a non–negative measure of the difference 
between two probability density functions PXn and MXn for a random process Xn:

HP‖M =
∑

PXn ln
PXn

MXn

(2.10)

During training a join–histogram is used to create probability functions for the classes of faces 
and non–faces for each pair of pixels in the training set. Since pixel values are highly dependent 
on neighbouring pixel values, Xn is treated as a first order Markov process and the pixel values 
in the grey–level images are quantised to four levels. Colmenarez and Huang use a large 
set of 11 × 11 images of faces and non–faces for training to produce a set of look–up tables 
with likelihood ratios. To further improve the system performance and reduce computational 
requirements, pairs of pixels that contribute poorly to the overall divergency are dropped from 
the look–up tables and not used in the face detection task. Later in [13], Colmenarez and 
Huang further improved on this technique by including error bootstrapping. More recently, 
this technique has been incorporated in a real–time face tracking system.

Support Vector Machines

In Osuna et al. [63], a system based on support vector machine (SVM) was proposed for face 
detection. The proposed system follows the same framework as the one developed by Sung and 
Poggio [72] as described before. The system is trained with a SVM with a 2nd–degree polynomial 
as a kernel function with a decomposition algorithm which guarantees global optimality. 
Training is performed with the bootstrap learning algorithm, and the images are first extracted 
from an oval mask to eliminate pixels at the corners, and then pre–processed with lighting 
correction and histogram equalisation. Kumar and Poggio [41] recently incorporated Osuna et 
al.’s SVM algorithm in a system for real–time tracking and analysis of faces. They applied the 
SVM algorithm on segmented skin regions in the input images to avoid exhaustive scanning.

Bayes Classifiers

Besides SVMs, Schneiderman and Kanade [64, 65] described two face detectors based on Bayes’
decision rule, which is presented as a likelihood ratio test in the following equation:

P(image|object)
P(image|non–object)

>
P(non–object)

P(object)
(2.11)

If the likelihood ratio (left side) is greater than the right side, then it is decided that an 
object (a face) is present at the current location. Using Bayes’ decision rule is optimal if the 
representations for P(image|object) and P(image|non–object) are accurate. In the first proposed 
face detection system of Schneiderman and Kanade [78], the posterior probability function is 
derived based on a set of modifications and simplifications, which are listed as follows:
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• The resolution of a face image is normalised to 64× 64;

• Pixels of the face images are decomposed into 16× 16 sub–regions and it is assumed that
there is no statistical dependency among the sub–regions;

• The sub–regions are projected onto a 12–dimensional PCA subspace;

• The face subspace (constructed by PCA) of the entire face region is normalised to have
zero mean and unit variance.

In the second proposed system [79], instead of representing the visual attributes of the image by 
local eigenvector co–efficients as in the first approach, they are represented by locally sampled 
wavelet transforms. A wavelet transform can capture information regarding visual attributes in 
space, frequency, and orientation and thus should be well suited for describing the characteristics 
of the human face. In their work, the wavelet transform is a three–level decomposition using a 
5/3 linear phase filter–bank, which decomposes the image into 10 sub–bands. From these sub–
bands, 17 visual attributes, of each consisting of 8 co–efficients, are extracted and treated as 
statistical independent random variables. The co–efficients are quantised to three levels and the 
visual attributes are represented using histograms. With this approach, a view–based detector 
is developed with a frontal view detector and a right profile detector (to detect left profile 
images, the right profile detector is applied to mirror reversed images). Between these two 
systems, the eigenvector system gives the best performance results, but this is due to the data 
set consisting of mostly frontal–view faces. In a separate experiment on a data set consisting 
mostly of profile–view faces, the wavelet detector outperformed the eigenvector detected (which 
of course had been modified to detect profile views also). Bayes’ decision rule has also been 
applied for face detection.

Hidden Markov Models

A Hidden Markov Model (HMM) assumes that patterns can be characterised as a parametric
random process, where the parameters of this process can be estimated in a precise, well–
defined manner. In a pattern recognition problem using HMM, a number of hidden states need
to be decided first to form the model. Then the model can learn the transitional probability
between states from the training examples where each example is represented as a sequence
of observations. The goal is to maximise the probability of observing the training data by
adjusting the model parameters. Once the model has been trained, the output probability
of an observation determines the class to which it belongs. Intuitively, a face pattern can be
divided into several regions such as forehead, eyes, nose and mouth, which can be recognised
if these regions are observed in appropriate orders. Therefore, a HMM–based method usually
treats a face pattern as a sequence of observation vectors where each vector is a strip of pixels
representing a meaningful facial region, as shown in Fig. 2.9(a). The boundaries between strips
of pixels are represented by probabilistic transitions between states, as shown in Fig. 2.9(b),
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Figure 2.9: Face detection using HMM, re–produced from Samaria and Young [76].(a) Examples 
of observation vectors used to train an HMM model. Each face sample is divided into several 
facial regions. Observation vectors are constructed from a window of W × L. By scanning the 
image vertically with P pixels of overlap, an observation sequence can be constructed. (b) An 
HMM with five states is trained with sequences of observation vectors.

and each region is modelled as a multi–variate Gaussian distribution. After the model has been
trained, the output probability of an observation determines the class to which it belongs.

In [76], the HMM method was used for facial feature extraction and recognition. Since signif-
icant facial regions such as hair, forehead, eyes, nose, and mouth occur in the natural order from 
top to bottom, each of these regions is assigned to a state in a one–dimensional continuous HMM. 
Fig. 2.9(b) shows the five regions used in their system. During training, each image is segmented 
into five blocks from top to bottom as shown in Fig. 2.9(a). These blocks form the observation 
sequences for the image and the trained HMM determines the output class that the image 
belongs.

2.4 Face Descriptors in MPEG-7

MPEG-7 is an ISO/IEC standard developed by MPEG (Moving Picture Experts Group), the
committee that also developed the Emmy Award winning standards known as MPEG-1, MPEG-
2, and MPEG-4 standard. MPEG-7 is a standard for describing the multimedia content data
that supports some degree of interpretation of the information’s meaning. The aim of MPEG-7
is to provide standardised support on a range of applications across different medium 2.

The core technologies developed in MPEG-7 are the description of audio–visual data content
in multimedia environments, which come in the form of MPEG-7 descriptors. The standard
MPEG-7 visual description tools consist of basic structures and descriptors that cover the
following basic visual features: colour, texture, shape, motion, localisation, and face recognition.
Each category consists of elementary and sophisticated descriptors. Here, we will only describe
the face recognition descriptor associated in the MPEG-7.

2More information about MPEG-7 can be found at the MPEG homepage (http://mpeg.tilab.com), the
MPEG-7 Consortium website (http://www.mp7c.org), and the MPEG-7 Alliance website (http://www.mpeg-
industry.com).
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The face recognition descriptor defined in MPEG-7 can be used to retrieve face images that
match a query face image. The descriptor represents the projection of a face vector onto a
set of basis vectors which span the space of possible face vectors. The face recognition feature
set is extracted from a normalised face image. This normalised face image contains 56 lines
with 46 intensity values in each line. The centre of the two eyes in each face image is located
on the 24th row and the 16th and 31st column for the right and left eye respectively. This
normalised image is then used to extract the one dimensional face vector which consists of the
luminance pixel values from the normalised face image arranged into a one dimensional vector
using a raster scan starting at the top-left corner of the image and finishing at the bottom-right
corner of the image. The face recognition feature set is then calculated by projecting the one
dimensional face vector onto the space defined by a set of basis vectors.

2.5 Face Image Database

Although many face detection methods have been proposed, less attention has been paid to
the development of an image database for face detection research. Table 2.1 summarised some
common face image databases used in face detection.

2.6 Conclusion

In the previous sections, an extensive review of feature–based, knowledge–based and image–
based algorithms for face detection has been presented, together with a brief presentation of
some of the application areas. The following is a concise summary with conclusions representing
the main issues in this chapter.

• Face detection is currently a very active research area and the technology has come a long 
way since the survey of Chellappa et al. [10]. The last couple of years have shown great 
ad-vances in algorithms dealing with complex environments such as low quality grey–scale 
images and cluttered backgrounds. Although some of the best algorithms are still too 
computation-ally expensive to be applicable for real–time processing, this is likely to change 
with coming improvements in computer hardware.

• Feature–based methods are applicable for real–time systems where colour and motion is avail-
able. Since an exhaustive multi–resolution window scanning is not always preferable, feature–
based methods can provide visual cues to focus attention. In these situations, the most widely 
used technique is skin colour detection. Out of the feature–based approaches which perform on 
grey scale static images, Maio and Maltoni’s [52] algorithm seems very promising, showing good 
detection results while still being computationally efficient.
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Data Set Description Web location
AT&T Database 400 images of 40 subjects, 10 images

per subject.
http://www.uk.research.att.com

CMU Database 130 images with 507 labelled faces.
The images are grey in colour and of
varying size and quality.

http://vasc.ri.cmu.edu/idb/html/face/

FERET Database Collection of male and female faces.
Each image contains a single per-
son with certain expression in un-
cluttered background.

http://www.nist.gov/humanid/feret

Harvard Database Cropped, masked face images under
various illumination conditions.

ftp://ftp.hrl.harvard.edu/pub/faces/

M2VTS Database A multi–modal database containing
various image sequences.

http://poseidon.csd.auth.gr/M2VTS/
index.html

MIT Database Faces of 16 people, 27 images of each
person under various lighting condi-
tions, scale and head orientation.

ftp://whitechapel.media.mit.edu/pub/
images/

MIT CBCL Collection of 6,977 training images
(2,429 faces and 4,548 non–faces)
and 24,045 test images (472 faces
and 23,573 non–faces)

http://cbcl.mit.edu/cbcl/software-
datasets/FaceData2.html

Yale Database Face images with glasses, different
expressions, and under various light-
ing conditions.

http://cvc.yale.edu

UMIST Database 564 images of 20 subjects where each
subject covers a range of poses from
profile to frontal views.

http://images.ee.umist.ac.uk/danny/
database.html

University of Bern
Database

300 frontal face images of 30 people
and 150 profile images.

ftp://iamftp.unibe.ch/pub/Images/
FaceImages/

Table 2.1: Face Image Database

• Knowledge–based methods use explicit rules that describe the features of a human face and
their relationships when prior knowledge of human faces is available. By using these rules,
face candidates can be identified and this usually follows with a verification process to reduce
false detection. The main challenge with this approach is the difficulty in translating human
knowledge into well–defined rules without being too restrictive or too general. Experience from
the literature suggested that this approach works well in detecting frontal faces in uncluttered
scenes.

• Image–based approaches are the most robust techniques for processing grey–scale static im-
ages. Sung and Poggio [84] and Rowley et al. [73] set the standards for research on this topic, and 
the performances of their algorithms are still comparable to more recent image–based ap-
proaches. Since all these algorithms are based on multi–resolution window scanning to detect 
faces at all scales, this makes them computationally expensive. Multi–resolution window scan-
ning can be avoided by combining the image–based approach with a feature–based method as a 
pre–processor with the purpose of guiding the search based on visual clues such as skin colour.

• It is not easy to evaluate and compare current algorithms. Since there are no standard
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evaluation procedures or agreements on the number of faces in the data set, it is hard to draw 
any conclusions. There is a need for an evaluation procedure for face detection algorithms 
similar to the FERET [66] test for face recognition.

• The human face is a dynamic object but with a standard configuration of facial features which
can vary within a limited range. It is a difficult problem to detect such dynamic objects and
considering the changes in faces over time (facial hair, glasses, wrinkles, skin colour, bruises)
together with variations in pose, developing a robust face detection algorithm is still a hard
problem to solve in computer vision systems.
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Chapter 3

Facial Feature Extraction

The aim of this chapter is two–fold. First, to compare and evaluate different skin colour
models and thereby to estimate the properties of human skin colours. In doing so, we can
effectively detect skin regions in colour images and hence reduce the searching space for possible
face candidates. The second objective is to develop a facial feature extraction method to
capture the unique characteristics of different face representations. In particular, the principal
component analysis (PCA) and independent component analysis (ICA) models are introduced
and compared from a statistical point of view. The aim is to construct a subspace that models
the distribution of human faces. Both skin information and subspace facial representation will
then be used in the next chapter to develop an algorithm to detect faces in colour images.

3.1 Skin Colour Segmentation

The objective of skin modelling is to find a decision rule that could discriminate between skin
and non–skin pixels. Although pixel–based skin detection has long history, only few papers had
provided comparisons of different techniques being published. The main reason is that there
is a lack of a standard skin pixel database for comparison and evaluation, and most authors
use their own collected data sets. In this section, we describe several published skin modelling
techniques, try to find out their characteristic features and compare their performances using
the same set of data samples.

In general, these techniques can be categorised into non–parametric modelling and parametric
modelling. The idea of non–parametric modelling methods is to estimate a skin colour distri-
bution from training samples without deriving an explicit model or use some heuristic rules to
discriminate skin pixel from non–skin pixel. The advantages of non–parametric methods are
that they are fast in training and less dependent on the shape of distribution of the training
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sample. However, they need more storage space and are unable to generalise the training data.
Explicit thresholding and skin probability maps are examples of this approach. On the other
hand, the parametric modelling methods try to model the skin distribution explicitly. They
are the counterpart of the non–parametric methods. These methods need more training time
and are more dependent on the training sample. The advantages are that they need much less
storage space since only the model parameters are needed for estimation and can be fine–tuned
to a particular application. However, since they depend more on the shape of distribution, and
the colour space used, the performance varies significantly from one colour space to the other.
Single Gaussian modelling and mixtures of Gaussian are the most popular methods for the
parametric approach.

3.1.1 Explicit Thresholding

The easiest way to build a skin classifier is to use explicit rules based on prior knowledge of 
human skin. The advantage of this method is its simplicity and speed. Following the work of Peer 
et al. [64], we classify a pixel as skin pixel in RGB colour space if it satisfies the following 
conditions:

R > 95, G > 40, B > 20, |R−G| > 15, R > G,

R > B, and max{R, G,B} −min{R, G,B} > 15
(3.1)

3.1.2 Bayes Skin Probability Map

For Bayes skin probability map (SPM), we compute the probability P(skin|c) of observing a
skin pixel given a concrete colour value c based on a conditional probability P(c|skin) – a
probability of observing colour c, knowing that it is a skin pixel. By using the Bayes rule, we
can compute this probability as:

P(skin|c) =
P(c|skin)P(skin)

P(c|skin)P(skin) + P(c|¬skin)P(¬skin)
. (3.2)

The P(c|skin) and P(c|¬skin) are directly computed from the sample population, whilst the
prior probabilities P(skin) and P(¬skin) are estimated from the overall number of skin and
non–skin samples in the training set. From the above equation, the ratio of P(skin|c) and
P(¬skin|c) can be written as:

P(skin|c)
P(¬skin|c) =

P (c|skin)P (skin)
P (c|¬skin)P (¬skin)

. (3.3)

Comparing this ratio to a threshold Θ gives the skin/non–skin decision rule, which after some
manipulations can be re–written as:

P (c|skin)
P (c|¬skin)

> Θ. (3.4)
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Figure 3.1: Estimated probability density of the skin colour using single Gaussian distribution
in rgb, YCrCb and HSV colour space (from left to right).

3.1.3 Gaussian Modelling

For a single Gaussian, the skin colour distribution can be modelled by a Gaussian joint proba-
bility density function (pdf) which is defined as

P (c|skin) =
1√

2π|Σs|1/2
e−

1
2 (c−µs)T Σ−1

s (c−µs), (3.5)

where c is a colour vector and µs and Σs are the mean vector and covariance matrix respectively.
The probability P (c|skin) can be used directly as a measure of how likely a colour belongs to
skin colour.

Fig. 3.1 depicts the estimated skin colour distribution modelled by single Gaussian in rgb,
YCbCr and HSV colour spaces. rgb is a representation of normalised RGB which is defined
in Eq.(2.2). As the sum of normalised components is known (r+g+b=1), the third component
does not hold any significant information and can be ignored. The first insight of the result is
that the skin colour distribution occupies a tiny space in rgb and YCbCr colour space. However,
in HSV, the distribution has a big variance in Saturation values within a small range of Hue
values. Since the Hue value represents the nature of colour while the Saturation value measures
how strong the colour is, this suggests that human skin colour only occupies a tiny portion of
the natural colour but because of the different lighting conditions of images, it may cause a
wide variance in the whole colour space.

Although skin colour distribution can be modelled by single Gaussian, it may not be enough
for more complex skin distributions. In this case, the Gaussian mixture model (GMM) can be
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used in which the pdf is given by:

P (c|skin) =
k∑

i=1

πiPi(c|skin) (3.6)

where k is the number of mixture components, πi is the mixing parameters and πiPi(c|skin) is
each single Gaussian in the mixture model. The model parameters can be estimated by using
the Expectation Maximization (EM) algorithm.

The EM algorithm consists of two steps: the expectation step (E–Step) and the maximization
step (M–Step). Given n as the total number of feature points, xi representing one of them,
m being the number of clusters and d the dimensionality of the feature space, the E–Step is
expressed as follows:

f(xi|Φ) =
m∑

j=1

πjfj(xi|θj) (3.7)

fj(xi|θj) =
1

(2π)
d
2 |Σj | 12

e−
1
2 (xi−µj)

T Σ−1
j (xi−µj) (3.8)

where θj = (µj , Σj) is the set of parameters for the probability density function fj(xi|θj)
with µj , Σj and πj as the mean, the covariance matrix and the mixing proportion of cluster j,
respectively, subject to the conditions that πj > 0 and

∑m
j=1 πj = 1. Φ = (π1, . . . πm, θ1, . . . θm)

is the set of all model parameters, and f(xi|Φ) is the probability density function of the observed
data point xi given parameters Φ.

In the M–Step the algorithm iterates to re–estimate the model parameters that maximise the
log–likelihood log f(X|Φ) using the updated equations:

E[zij ] = p(zij = 1|X, Φ(t)) =
π

(t)
j pj(xi|Φ(t)

j )
∑m

s=1 ps(xi|Φ(t))π(t)
s

(3.9)

π
(t+1)
j =

1
n

n∑

i=1

E[zij ] (3.10)

µ
(t+1)
j =

1

nπ
(t+1)
j

n∑

i=1

E[zij ]xi (3.11)

Σ(t+1)
j =

1

nπ
(t+1)
j

n∑

i=1

E[zij ](xi − µ
(t+1)
j )(xi − µ

(t+1)
j )T (3.12)

where E[zij ] is the expected value of the probability that data point i belongs to cluster j.
At each iteration step, log f(X|Φ) is maximised until all the parameters are converged or a
pre–defined step size is reached.

There are two ways to initialise the model parameters: the first is to initialise the means
randomly and set the covariance matrix to identity matrix whilst the other is to use K–Means
clustering to estimate the initial means for each component. Experiments suggest that both

36



techniques generate similar results if good candidates are selected as starting points, but the 
second approach gives faster convergence of the data. Thus, the second approach is adopted 
here. One practical problem in using EM algorithm is the selection of model order. If a high 
model order is used, the model parameters estimated may over–fit the training data. On the 
other hand, if a small model order is used, the parameters may not be estimated correctly. In our 
experiments we used the principle of Minimum Description Length (MDL) as described in [91] to 
select the model order automatically. The MDL is a heuristic method in the sense that it does not 
minimise an error function between the estimated and the true model order but instead it defines 
various information criteria that only depend on the unknown model order. One of the most 
popular MDL criteria, the information criterion of Rissanen, is defined as:

MDL(K) = − ln[L(X|Φ)] +
1
2
M ln(n). (3.13)

The first term − ln[L(X|Φ)], the maximised mixture likelihood of P (X|Φ), measures the system
entropy which can be seen as a measure for the number of bits needed to encode the observations
X = [x1,x2, . . .xn] with respect to the model parameters Φ

P (X|Φ) =
n∏

i=1

f(xi|Φ). (3.14)

The second term 1
2M ln(n) measures the additional number of bits needed to encode the model

parameters and serves as a penalty for models that are too complex. M describes the number
of free parameters and is given by M = 2dK + (K − 1) where K is the selected model order
(number of clusters) and d is the dimension of the feature space.

Thus the optimal number of model order is determined by the following iterative procedure:
first, the maximum likelihood of the Gaussian mixtures is computed using K–Means 1 for model
initialisation and EM for parameter estimation with model order 2 to 4. Then the value of MDL
is calculated using Eq.(3.13) for each model order and the model parameters are selected for
the minimum value of MDL.

By using the MDL principle, the best model order selected in GMM for both rgb and YCbCr
colour space is 2. However, in YCbCr colour space, we found that weighting of the second
mixture is so insignificant that it can be almost neglected, in which way it means a single
Gaussian model can well represent the skin distribution in YCbCr colour space. On the other
hand, the best model order selected in HSV colour space is 3. As from Fig. 3.2, we can see that
the middle mixture captures the most skin distribution while two other less weighted mixtures
model the rest of the distribution.

To evaluate the performance of different skin models, two millions skin pixels and one million
non–skin pixels are collected to train the models. For model testing, 560,000 skin pixels and
1,215,000 non–skin pixels are used and the results are measured in terms of true positive
(TP) and false positive (FP), which are summarised in Table 3.1. To our surprise, the non–

1The K in K–Means is the number of clusters, so it is same as K in the document.
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Figure 3.2: Estimated probability density of the skin colour using Gaussian mixture models in
rgb, YCrCb and HSV colour space (from left to right).

parametric methods perform slightly better than parametric methods. This is possibly because
of the presence of outliers, usually due to the variations of different lighting conditions, in the
training set which give noises during the parameter estimation. Overall, none of the models
outperformed compared with the rests. We also found that the skin models in HSV colour space
give a higher false positive rate than the others. From Fig. 3.1 and Fig. 3.2, we have pointed
out that the skin distribution in HSV occupies a much bigger area portion than the other colour
spaces, and hence it has a bigger overlapping area with the non–skin colour. The conclusion
from the experimental results is that the performance of skin modelling mainly depends on the
distribution of skin samples in each corresponding colour space, and hence the tightness of the
cluster and the overlapping with non–skin samples are the main criteria. The complexity of
the skin model is insignificant in terms of detection accuracy.

Method True Positive (TP) False Positive (FP)
Empirically Thresholding in RGB 91.6% 15.55%
Bayes SPM in RGB 87.83% 9.6%
Single Gaussian in rgb 90.22% 24.91%
Single Gaussian in CbCr 91.16% 19.75%
Single Gaussian in HSV 87.65% 30.5%
Gaussian Mixture in rgb 90.12% 22.84%
Gaussian Mixture in CbCr 89.06% 23.33%
Gaussian Mixture in HSV 84.23% 24.11%

Table 3.1: Performance of different skin detection models
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3.2 Face Patterns in Subspace Modelling

In this section, we describe two subspace models – principal component analysis (PCA) and
independent component analysis (ICA) – to capture the distribution of face patterns.

3.2.1 Principal Component Analysis

Given a random vector x with d elements from a N sample of data, PCA is a statistical
technique that frequently reduces the number of dimension from d to t where t 6 d in the
feature space of x under which the retained variance is a maximum.

Consider a linear model as follows with:

x = x̄ + Wb (3.15)

where x and b are d× 1 column vectors, W is a d× d matrix, and x̄ is the mean vector, then
the n samples of observed data set can be written as:

xi = x̄ + Wbi, i = 1, 2, . . . , n (3.16)

This model is, however, unidentifiable in the sense that there is an infinite number of equally
good solutions since the matrix W and the vector b can both be transformed by inserting any
non–singular matrix M and its inverse M−1 on the right–hand side as:

x = x̄ + WMM−1b

⇒ x = x̄ + W′b′ (3.17)

To make the model well determined, the following constraints must be made:

1. Pairwise uncorrelated: E{bibj} = 0, i < j, for i, j ∈ [1, 2, . . . , d]

2. Normalisation: wT
i wi = 1 , for i = 1, 2, . . . , d

3. Orthogonality: wT
i wj = 0 for i, j ∈ [1, 2, . . . , d] and i 6= j

4. The elements of W are real and positive

5. The entries of W are sorted in order

These constraints imply that W is a square symmetry matrix and we can now re–write Eq.(3.16)
to:

bi = WT (xi − x̄) (3.18)
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Therefore, we are looking for a weight vector that maximise the criteria represented by the
elements of the diagonal matrix:

D = E{bibT
i }

= E{WT (xi − x̄)(xi − x̄)T W}
= WT E{(xi − x̄)(xi − x̄)T }W
= WT CxW

⇒ WD = CxW

⇒ σ2
i wi = Cxwi, i = 1, 2, . . . , d (3.19)

where Cx is the covariance matrix. This is the well–known eigenproblem when the normalisation
constraint is imposed. The solution is given in terms of eigenvectors e1, e2, . . . , ed of the matrix
Cx ordered according to their corresponding eigenvalues σ2

i .

By choosing the first t orthogonal vectors wi, for i = 1, 2, . . . , t, the vector bi = WT (xi − x̄),
where W = (w1,w2, . . . ,wt), is thus a t–dimensional reduced representation of the observed
vector xi. The projection onto this principal subspace minimises the squared re–construction
error

∑ ‖xi − x̂i‖2. The optimal linear re–construction of xi is given by x̂i = x̄ +
∑t

i=1 wibi.

3.2.2 Independent Component Analysis

Independent component analysis is a statistical and computational technique for revealing hid-
den factors that underlie sets of random variables, measurements, or signals. ICA defines a
generative model for the observed multi–variate data in which the data variables are assumed
to be linear mixtures of some unknown latent variables, and the mixing system is also un-
known. The latent variables are assumed to be non–Gaussian and mutually independent, and
hence they are called as the independent components of the observed data. These independent
components, also called sources or factors, can be found by ICA. ICA is superficially related to
principal component analysis and factor analysis. It is a much more powerful technique, how-
ever, capable of finding the underlying factors or sources when these classic methods fail. In
recent years, there has been great research interest in ICA spanning different application areas.
The world leading research group on ICA is the department of computer science in University
of Helsinki 2.

In fact, PCA can be derived as a special case of ICA using Gaussian source models. As was
shown from the previous section, PCA chooses an orthogonal matrix which allows optimal
linear re–construction of the input in the sense of minimising the mean square error, and the
re–constructed data are uncorrelated. However, independence is a stronger concept, in the sense

2More ICA related information and the research work of University of Helsinki can be found at
http://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml.
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of statistics, than uncorrelatedness. Since ICA is based on this stronger concept, consequently,
it is expected to be better than PCA. In the following sections, we will prove that independence
is a stronger property than uncorrelatedness before going into details of ICA model.

3.2.3 Statistical Independence and Uncorrelatedness

Given a random vector x ∈ Rn from a χ distributed data set, the correlation rij between the ith 
and jth component of x is contained in the second moment [61] as:

rij = E{xixj}
=

∫ ∞

−∞
xixjpx(x)dx

=
∫ ∞

−∞

∫ ∞

−∞
xixjpxixj (xi, xj)dxidxj (3.20)

px(x) is the probability density. Hence, the correlation matrix is Rx = E{xxT }. Since the
covariance matrix is Cx = E{(x− x̄)(x− x̄)T } and by substituting this back to the equation,
we can be easily see that Rx = Cx + x̄x̄T .

Two random variables x and y are said to be uncorrelated if their cross–variance or covariance
matrix is 0:

Cxy = E{(x− x̄)(y− ȳ)T } = 0. (3.21)

If x and y are uncorrelated,

Rxy = Cxy + x̄ȳT ,

Cxy = 0,

E{xyT } = Rxy = x̄ȳT = E{x}E{y}T . (3.22)

However, when the two random variables are taken from the same data sample, this uncor-
relatedness condition cannot be satisfied due to the high correlation between each component
and itself. In this situation, the condition now is that different components of x are mutually
uncorrelated, which means the covariance matrix is:

Cx = E{(x− x̄)(x− x̄)T } = D (3.23)

D is a diagonal matrix for which the diagonal elements are variances σ2
xi

= E{(xi − x̄i)2} and
with zero elements off the diagonal. Each pair–wise components of x is uncorrelated in the way
that:

cxixj
= E{(xi − x̄i)(xi − x̄j)T } = 0, for i 6= j. (3.24)
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On the other hand, two random variables x and y are said to be independent if and only if

px,y(x,y) = px(x)py(y). (3.25)

If we let f(x) and g(y) be two integrable functions, then the two independent random variables
x and y will hold the following property:

E{f(x)g(y)} =
∫ ∞

−∞

∫ ∞

−∞
f(x)g(y)px,y(x, y)dxdy

=
∫ ∞

−∞
f(x)px(x)dx

∫ ∞

−∞
g(y)py(y)dy

= E{f(x)}E{g(y)} (3.26)

And it can be easily seen that, if we let f(x) = xi and g(y) = xj for i 6= j, this implies that

E{xixj} = E{xi}E{xj} (3.27)

Eqs.(3.25) and (3.27) imply that variables xi and xj are uncorrelated. Hence, we can see that
if the components of x is mutually independent they are also mutually uncorrelated.

In data analysis, the distributions of all data sets could be categorised as either a Gaussian
(normal distribution) or as non–Gaussian. According to the sign of their fourth order cumulant
statistics, also known as kurtosis, the non–Gaussian distributions can be further divided into
sub–Gaussian distribution (platykurtic) and super–Gaussian distribution (leptokurtic). Kurto-
sis is the fourth–order cumulant of a data set, which is defined as:

kurt(x) = κ4 = E{x4} − 3[E{x2}]2

= µ4 − 3µ2
2 (3.28)

and the normalised kurtosis is defined as:

κ̄ =
µ4

µ2
2

− 3 (3.29)

where µi stands for the i–th moment of the data set. A distribution which has zero kurtosis is
called mesokurtic, or a Gaussian distribution. If the kurtosis is less than zero, it is said to be a
sub–Gaussian distribution. If the kurtosis is greater than zero, it is said to be a super–Gaussian
distribution.
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Gaussian Distribution

Given an n–dimensional random vector x from a Gaussian distribution, its probability density
function (PDF) is defined as:

px(x) =
1

(2π)n/2|Cx|n/2
exp(−1

2
(x− x̄)T C−1

x (x− x̄)). (3.30)

If we assume that the components of x are mutually uncorrelated, Eq.(3.23) implies that
Cx = diag(σ2

x1
, σ2

x2
, . . . , σ2

xn
), so:

C−1
x = diag(

1
σ2

x1

,
1

σ2
x2

, . . . ,
1

σ2
xn

)

⇒ (x− x̄)T C−1
x (x− x̄)

=
(x1 − x̄1)2

σ2
x1

+
(x2 − x̄2)2

σ2
x2

+ . . . +
(xn − x̄n)2

σ2
xn

⇒ px(x) =
n∏

i=1

pxi
(xi). (3.31)

Hence we can see that uncorrelated Gaussian distribution also implies independence.

Non–Gaussian Distribution

Unlike Gaussian distributions, there is not such standard form for non–Gaussian distributions
and it may not be possible to prove directly whether uncorrelatedness implies independence for
non–Gaussian distributions. But we may assume that uncorrelated non–Gaussian distributions
also lead to independence and if we could find any one example that contradict this assumption,
we would disprove this hypothesis.

A widely used super–Gaussian distribution is the Laplace or the so–called double exponential
distribution, which is defined as:

px(x) =
1
2b

e−
|x−µ|

b (3.32)

where b is a real number and µ is the mean of px(x). The mean, variance and normalised
kurtosis of the Laplace distribution are:

x̄ = µ

σ2
x = 2b2

κ̄x = 3. (3.33)

Given an n–dimensional random vector x from the Laplace distribution with elements xi, for
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Figure 3.3: Uniform distribution.

Figure 3.4: Rotated uniform distribution.

i = 1, 2, . . . , n, its probability density function (PDF) is

px(x) =
1

2‖b‖e−
‖x−x̄‖
‖b‖ . (3.34)

If the elements of vector x are mutually uncorrelated, then again apply Eq.(3.23) we will see
that uncorrelatedness does not imply independence for Laplace distribution, since

px(x) =
1

2
√

(b2
1 + b2

2 + . . . + b2
n)2

exp(−
√

(x1 − x̄1)2 + (x2 − x̄2)2 + . . . + (xn − x̄n)2√
b2
1 + b2

2 + . . . + b2
n

)

6= 1
2nb1b2 . . . bn

exp(−(
|x1 − x̄1|

b1
+
|x2 − x̄2|

b2
+ . . . +

|xn − x̄n|
bn

))

= px1(x1)px2(x2) . . . pxn(xn). (3.35)

Now let us consider an often used sub–Gaussian distribution. Fig. 3.3 shows a set of random
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data generated from Gaussian distribution and are whitened beforehand, which means x̄ = 0
and Cx = I. Now consider a linear transformation of the data, as depicted in Fig. 3.4, and
let the rotation matrix as R, thus x′ = Rx. Following Eq. 3.23, the covariance matrix of the
transformed data x’ is:

Cx′ = E{(x′ − x̄)(x′ − x̄)T }
= E{(x′)(x′)T }
= RE{xxT }RT

= RIRT

= I (3.36)

The new data is uncorrelated as well. From Fig. 3.4 we can easily see that the value of x2 is at
the extreme values of x1. Hence, the new data is uncorrelated but it is not independent.

To conclude, we have shown that if the elements of a random vector x are mutually independent,
it implies that the elements are mutually pair–wise uncorrelated as well. However, it is not
always true the other way round; i.e.: if the elements of a random vector x are uncorrelated,
they may not necessarily be statistically independent. Therefore, independence is a stronger
property than uncorrelatedness in statistics.

3.2.4 ICA Model

Assuming that we observe n linear mixtures x1, . . . , xn of n independent components, we can
define ICA by using a statistical “latent variables” model as follows:

xj = aj1s1 + aj2s2 + · · ·+ ajnsn, for all j. (3.37)

where xj is a observed random mixture variable and sk is each independent component. Usually
it is assumed that both the mixture variables and the independent components have zero mean.
If this is not true, then the observed variables xi can always be centered by subtracting the
sample mean, which makes the model zero-mean. If we denote x and s as the random vectors
whose elements are xi, . . . , xn and s1, . . . , sn respectively and likewise by A the matrix with
elements aij , by using this vector–matrix notation, the above mixing model can be written as:

x = As =
n∑

i=1

aisi. (3.38)

The statistical model in Eq.(3.38) is known as the independent component analysis, or ICA
model. The ICA model is a generative model that describes how the observed data are generated
by a process of mixing the components si which are assumed to be statistically independent as
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defined in the previous section. These independent components are latent variables in a way
that they cannot be directly observed. Both the mixing matrix A and the latent variables s

must be estimated from the observed data x. Once the mixing matrix A is estimated, then we
can compute its inverse, W, and obtain the independent components simply by:

s = Wx (3.39)

3.3 ICA and PCA

Following our discussions in the previous sections, we can see that PCA can be derived as a 
special case of ICA. PCA is based on the assumption of Gaussian source model while ICA 
is based on non–Gaussian distribution. When the sources are Gaussian, the likelihood of the data 
depends only on the first– and second–order statistics. For images, Oppenheim and Lim [62] have 
shown that second–order statistics capture the amplitude spectrum of images while the 
higher–order statistics capture the phase spectrum. It was also illustrated in [80] that the 
phase spectrum contains the structural information in images which derives human perception 
but not the power spectrum. Since PCA is only sensitive to the power spectrum, it might not 
be particularly well–suited for representing natural images.

PCA may nevertheless be carried out on non–Gaussian distributions but there will be usually 
dependencies remaining in the results. In addition, Bell and Sejnowski [3] have empirically 
observed that many natural signals are better described as linear combinations of sources with 
long tailed distributions, which are known as “super–Gaussian” sources.

To sum up, ICA has the following potential advantages over PCA:

1. It is based on a stronger statistical concept than PCA;

2. It provides a better probabilistic model of the data that can better identify when the data
concentrate in n–dimensional space;

3. It uniquely identifies the mixing matrix W;

4. It can find a non–orthogonal basis which may re–construct the data better than PCA in
the presence of noise;

5. It is sensitive to higher–order statistics other than just the second–order statistics and,
hence, it potentially captures the structural information of the source.
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3.4 Performing ICA on Face Images

Let X be a data matrix with nr rows and nc columns where each column represents a face
image. We may think of each column of X as independent trials of a random experiment. In
this sense we think of the ith row of X as the specific value (pixels) taken by a random variable
Xi (a face image) across nc independent trials. Therefore, pixels are random variables and
images are trials. The goal is to find a good set of basis images to represent a database of faces.
Fig. 3.5 shows the idea of this ICA architecture for face images.

Figure 3.5: The architecture of ICA representation for face images.

Due to the high dimensional space of the original data, we first apply PCA to reduce the
dimensionality. It should be noted that the use of PCA in the input did not throw away
the high–order statistical relationships; the relationships still exist in the data but were not
separated. Let Pm denote the matrix containing the first m PC axes in its column. We
perform ICA on PT

m to produce m independent source images in the rows of U as follows:

WPT
m = U (3.40)

PT
m = W−1U (3.41)

The PC representation of the set of zero–mean images in X based on Pm is defined as Rm =
XPm. A minimum squared error approximation of X based on Pm is obtained by X̂ = RmPT

m.
By replacing PT

m with equation Eq.(3.41) we obtain:

X̂ = RmW−1U. (3.42)
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Figure 3.6: Examples of face representations extracted using PCA and ICA models. The first 64
PCA–based eigenfaces are shown at the left–hand side ordered according to their eigenvalues.
The right–hand side gives the corresponding 64 ICA–based face representations.

where the rows of RmW−1 contains the co–efficients for the linear combination of statistically
independent source U that comprised X̂. Therefore, the IC representation of the face images
based on the set of m statistically independent feature images, U, is given by:

B = RtW−1

= XtPmW−1, (3.43)

where Xt is a test image. The source images estimated by the rows of U are then used as basis
images to represent faces. Fig. 3.6 shows some examples of ICA–based face representation
constructed from 2,429 face examples from the training set of the MIT CBCL Face Data
3. Fig 3.7 depicts examples of re–constructed images with strong noises using PCA and ICA
projections. The result shows that ICA re–construct noisy images better than PCA, one possible
explanation is that the ICA facial subspace captures more facial structural information than
PCA subspace and hence gives better performance.

3.5 Conclusion

In this chapters, different skin models have been presented together with the evaluation results
and discussions of their advantages and disadvantages. Experimental results suggest that the
performance of different skin models mainly depends on the distribution of skin samples in
each corresponding colour space. Therefore, the conclusion is that the criteria of selecting an

3http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.
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Figure 3.7: Re–construction of images under strong noises using PCA and ICA projections.
From left to right, the images are the original images, images with strong noise, re–constructed
images using PCA projection and images using ICA projection.

appropriate skin model depends only on the tightness of the skin cluster and its overlapping
with non–skin samples.

We have also presented an account of feature extraction for face detection within the PCA and
ICA framework. The PCA and ICA models are compared from a statistical point of view and
we showed that ICA is based on a stronger statistical concept than PCA and consequently it
provides a better probabilistic model. From the discussion of ICA and PCA, we have developed
the underlying framework for facial feature extraction which is used in the next chapter.
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Chapter 4

Face Detection with SVM

In this chapter, we present the algorithm that learns structural facial pattern through the use
of support vector machine (SVM) algorithm and utilises colour information to detect faces in
colour images. The advantage of using SVM is that it is a maximal margin classifier and, con-
sequently, this gives low expected probability of generalisation errors. Due to its gerenalisation
property, it naturally fits the task of face detection.

4.1 Support Vector Machine

4.1.1 Structural Risk Minimisation

A SVM is a maximum margin classification tool based on structural risk minimisation principle.
The goal of a SVM is to produce a model which predicts target class value of data instances in
the testing set.

Given a set of labelled pairs of training instances (xi, yi), i = 1, . . . m where xi ∈ Rd, y ∈ 1,−1
and m is the number of samples, we seek to learn the mapping of xi 7→ yi. This is actually done
by estimating a function of x 7→ f(x, α), where α are the adjustable parameters of the function.
However, if no restriction is placed on the estimation of the class function, a function that does
well to the training samples need not generalise well to unseen examples. To see this, it should be
noted that for each function f and any test set (x̄1, ȳ1), . . . , (x̄m̄, ȳm̄) ∈ Rd×{−1, 1}, satisfying
{x̄1, . . . , x̄m̄} ∩ {x1, . . . ,xm} = {}, there exists another function f∗ such that f∗(xi) = f(xi)
for all i = 1, . . . , m, and f∗(x̄i) 6= f(x̄i) for all i = 1, . . . , m̄. Since only training samples are
available to us, we have no means to choose which of the two functions is preferable. Hence, a
practical way is to minimise the training error (or empirical risk) by:
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Rempir(α) =
1

2m

m∑

i=1

| f(xi, α)− yi | (4.1)

The expectation of the test error is therefore:

R(α) =
∫

1
2
| f(x, α)− yi | dP (x, y) (4.2)

where P (x, y) is the probability distribution of the training data assuming that the data are
generated independently.

The Vapnik–Chervonenkis (VC) theory [90] shows that it is imperative to restrict the class of 
functions that f is chosen from to one, which has the capacity that is suitable for the amount 
of available training data. This provides bounds on the test error and minimisation of these 
bounds lead to the principle of structural risk minimisation. The best–known capacity concept 
of VC theory is the VC dimension which is defined as the largest number of points that can be 
separated in all possible ways by using functions of the given class. If we choose some η such 
that 0 < η < 1, by using VC theory, which is the bound for all functions of the class, with 
probability of 1 − η, so that:

R(α) ≤ Rempir(α) +

√
h(log 2m

h + 1)− log(η
4 )

m
(4.3)

where h is a non–negative integer known as the Vapnik Chervonenkis (VC) dimension. It is a
measure of the notation of capacity mentioned above. The right–hand side of Eq.(4.3) gives
the risk bound of the model and the second term on the right–hand side is called the “VC
confidence”.

Although it is usually impossible to compute the left–hand side of Eq.(4.3), we can still easily
compute the right–hand side of the equation if we know the value of h. Therefore, given several
different functions f(x, α) and choosing a fixed, sufficiently small η, the function that minimises
the right–hand side is the one that gives the lowest upper bound of the actual risk.

4.1.2 Construction of Hyperplane Classifier

In this section we will look at how the machine can learn the hyperplane that separate the
training data. Again let us label the training data (xi, yi), i = 1, . . . m, yi ∈ {−1, 1},xi ∈ Rn.
Consider the class of hyperplanes as:

(w · x) + b = 0, w ∈ Rn, b ∈ R, (4.4)
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and the decision function is:
f(x) = sgn((w · x) + b). (4.5)

To construct f from the empirical data, we have to find a learning algorithm that meets two
conditions: first, among all the separating hyperplane there exists a unique one yielding the
maximum margin of separation between classes:

max
w,b

min{‖x− xi‖ : x ∈ Rn, (w · x + b = 0), i = 1, . . . , m}; (4.6)

and second, the capacity decreases with increasing margin. Let d+(d−) be the shortest distance
from the separating hyperplane to the closest positive (negative) point, the margin will be
defined as d+ + d−. In a linear separation case, the SVM simply looks for a hyperplane that
maximise the separating margin. This can be formulated as follows:

xi ·w + b ≥ +1 for yi = +1 (4.7)

xi ·w + b ≤ −1 for yi = −1. (4.8)

Eqs.(4.7) and (4.8) can be combined into one set of inequalities:

yi(xi ·w + b)− 1 ≥ 0 ∀i. (4.9)

Points that satisfy Eq.(4.7) will lie on the hyperplane H1 : xi ·w + b = 1 with normal w and
perpendicular distance from the origin |1−b|/‖w‖. Similarly, points that satisfy Eq.(4.8) will lie
on the hyperplane H2 : xi ·w+ b = −1 with the same norm w and perpendicular distance from
the origin |−1− b|/‖w‖. Hence d+ = d− = 1/‖w‖ and the margin is simply d+ +d− = 2/‖w‖.
It can be seen that H1 and H2 are parallel since they have the same normal and that no training
points fall between them. Hence we are looking for a pair of hyperplanes that maximises the
margin by minimising the ‖w‖2 subject to constraints in Eq.(4.9). Putting them together to
construct the optimal hyperplane will solve the following optimisation problem:

min
w,b

1
2
‖w‖2

subject to yi(xi ·w + b) ≥ 1, i = 1, . . . , m. (4.10)

We may solve Eq.(4.10) by its Lagrangial dual:

max
α≥0

(min
w,b

L(w, b, α)) (4.11)
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Figure 4.1: An example of binary classification problem. The optimal hyperplane is orthogonal 
to the shortest line connecting the convex hulls of the two classes, and intersect it half–way 
between the two classes. Re–produced from Chen et al. [11].

where

L(w, b, α) =
1
2
‖w‖2 −

m∑

i=1

αi(yi · ((xi ·w) + b)− 1). (4.12)

The Lagrangian L has to be minimised with respect to the primal variables w and b and
simultaneously maximised with respect to the dual variables αi, subject to the constraints
αi ≥ 0. This is a convex quadratic programming problem. To simplify this dual problem, as
L(w, b, α) is convex when α is fixed, for any given α,

∂

∂b
L(w, b, α) = 0

∂

∂w
L(w, b, α) = 0 (4.13)

which leads to the conditions:

w =
m∑

i=1

αiyixi (4.14)

and
m∑

i=1

αiyi = 0. (4.15)
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Figure 4.2: An example of binary classification problem using polynomial kernel K(xi,xj) =
(γxT

i xj +r)d. Circles and crosses are two classes of training samples, the lines give the decision
boundary. Support vectors found are marked by extra circles. From top left to bottom right,
the parameter values are r = 1 and d = 1, 2, 4, 6.

Substituting these constraints into Eq.(4.11), gives:

max
α

=
m∑

i=1

αi − 1
2

m∑

i,j=1

αiαjyiyj(xi · xj) (4.16)

subject to

{
αi ≥ 0, i = 1, . . . , m∑m

i=1 αiyi = 0

Following the above discussion, the hyperplane decision function can be written as:

f(x) = sgn(
m∑

i=1

yiαi · (x · xi) + b). (4.17)

Thus, the solution vector w is an expansion in terms of a subset of training samples, whose
αi is non–zero, called as support vectors. These support vectors lie on the separating margin
while all the remaining training set are irrelevant. In other words, the hyperplane is completely
determined by the support vectors only, it does not depend on other training samples.

4.1.3 Kernel

From the previous sections, we will realise that the data appearing in the training problem is
in the forms of dot product, xi · xj . To generalised the above methods to the case where the
decision function is not a linear function of data, [5] suggested that we can transform the data
into some dot product space H, which need not be identical to Rd. In other words, we are
looking for a mapping:

Φ : Rd → H (4.18)

where H is called a feature space. Then the training algorithm would only depend on the data
through the dot products in H, in the form of Φ(xi) ·Φ(xj). It should be noted that the feature
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space H could possibly be an infinite dimensional space which would make it difficult to work
with Φ explicitly. However, if there is a kernel function K such that K(xi,xj) = Φ(xi) ·Φ(xj),
then we would only need to use the kernel in the training algorithm without explicitly knowing
what Φ is. Replacing xi · xj by K(xi,xj) in previous equations, we obtain:

f(x) =
m∑

i=1

αiyiΦ(xi) · Φ(xj) + b

=
m∑

i=1

αiyiK(xi,xj) + b (4.19)

Some examples of kernel are:

linear : K(xi,xj) = xT
i xj

polynomial : K(xi,xj) = (γxT
i xj + r)d, γ > 0

Gaussian function : K(xi,xj) = exp(−‖xi − xj‖2/2σ2)

radial basis function (RBF) : K(xi,xj) = exp(−γ‖xi − xj‖2), γ > 0

sigmoid : K(xi,xj) = tanh(γxT
i xj + r) (4.20)

where γ, r, and d are all kernel parameters.

To summarise, there are three benefits transforming the data into H via the kernel K : 1) we
could define a similarity measure in the dot product in H; 2) we could deal with the patterns
geometrically by using linear algebra and analytic geometry; and 3) we could design a large
variety of learning algorithm by choosing different mappings Φ.

4.1.4 C-Soft Margin Support Vector Classifier

The previous sections describe the construction of linear and non–linear SVM. In practice,
separating hyperplane may not exist. For instance, a high noise level (presence of outliers) may
cause a large overlap of the classes from which a separating hyperplane may not be constructed.
This is particular true for image signals where noises are always presented. One practical
solution for this problem is to introduce slack variables

ξi ≥ 0, i = 1, . . . , m (4.21)

into Eq.(4.10) in order to relax the constraints to

yi · ((xi ·w) + b) ≥ 1− ξi, i = 1, . . . , m. (4.22)

By controlling both the classifier capacity via ||w|| and the sum of the slacks
∑m

i=1 ξi, a gen-
eralised classifier can then be found. It has also been shown that the latter also provides an
upper bound on the number of training errors.
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Let ξ = (ξ1, . . . , ξm), a soft margin classifier known as C-SVC can be found by minimising the
objective function

min
1
2
‖w‖2 + C

m∑

i=1

ξi

subject to yi · ((xi ·w) + b) ≥ 1− ξi and ξi ≥ 0, for i = 1, . . . ,m (4.23)

under the constraints C > 0. The parameter C is to be chosen by the user, a larger C
corresponding to assigning a higher penalty to errors. In practice, this trade–off parameter is
usually fine–tuned using cross validation method during the learning phase. By putting the
kernels back and re–writing the equation in Lagrange multipliers, again this becomes:

max
α

=
m∑

i=1

αi − 1
2

m∑

i,j=1

αiαjyiyjK(xi · xj) (4.24)

subject to

{
0 ≤ αi ≤ C, i = 1, . . . , m∑m

i=1 αiyi = 0

The only difference from the separable case described before is that now we have the upper
bound C on the Lagrange multipliers αi where the influence of the individual pattern is limited
and could be outliers.

4.1.5 Limitations of SVM

The main drawback of using SVM is that it depends too much on the kernel function for
separating data. There, however, is no measure to choose the most appropriate kernel. The
only solution is by trial and error in order to obtain a suitable kernel from experimental results.
On the other hand, a huge number of support vectors is needed to maximise the generalisation
ability. This will inevitably increase the computational burden. In addition, the run time will
grow almost linearly with the increase in dimensionality of the feature vector. To tackle this
problem, the most commonly adapted solution is to reduce the dimensionality of the feature
vector by constructing a subspace of the original feature space.

4.2 Face Detection in Colour Images

In this section, we developed a two–step face detection algorithm based on support vector
machines (SVM). The first step builds a skin detection model which serves as a platform to
reduce the searching space for potential face candidates. The second step extracts representative
facial features by projecting the image signals into a face subspace constructed under ICA
framework. A set of experiments are conducted and the proposed face detector is evaluated in
terms of precision and false alarm.
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Figure 4.3: Examples of skin detection using single Gaussian model in YCbCr colour space.

4.2.1 Human Skin Colour Model

Although different people have different skin colour, studies have showed that these differences
in colours tend to form a tight cluster in certain colour spaces [44]. To build a skin colour
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Figure 4.4: Cumulative covariance contained in the eigenvectors.

model, we use the single Gaussian skin colour model in YCbCr colour space as described in
Chapter 3. A pixel is identified to a skin colour if its corresponding probability is greater than
a threshold. Fig. 4.3 shows some examples of segmented regions from skin detection.

4.2.2 Learning Face Patterns using SVM Architecture

We use a total of 6,977 images (2,429 faces and 4,548 non–faces) collected from MIT CBCL Face
Data 1 to train the SVM classifier. The images are in 19×19 resolution and are gathered into one
matrix where each column represents one image vector. In order to reduce the dimensionality
of the feature space, we extract the first 64 eigenvectors from the original matrix. Fig. 4.4
shows the cumulative covariance captured by all the 361 eigenvectors. The first 64 eigenvectors
contain 99.97% of the total covariance from the data. Then the ICA kernel is built from this
64 eigenvector matrix using the algorithm described in Chapter 3. From Table 4.1, we can see
that the polynomial kernel at degree 3 with parameter C=10 gives the best performance during
training. In Table 4.1, the detection rate (DR) and the false alarm rate (FAR) are defined as:

DR =
TP

TP + FN

FAR =
FP

TP + FP
(4.25)

where true positive (TP) is the number of faces that are correctly detected, false positive (FP)
is the number of detected samples that do not correspond to faces, and false negative (FN) is

1The MIT CBCL Face Data is available at http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.
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the number of faces that are not detected.

Kernel DR FAR
linear 81.71% 9.14%
polynomial (degree=3) 94.68% 2.58%
Gaussian 69.33% 8.66%
RBF kernel 68.97% 8.77%

Table 4.1: Performance of different kernels during training phase.

In total, the SVM classifier provides 360 support vectors. To evaluate the performance of the 
classifier, we use the test set from MIT CBCL Face Data which consists of 24,045 test images 
(472 faces and 23,573 non–faces). Our ICA-based system is compared to the intensity-based 
system as described in Osuna et al. [63] using the MIT CBCL data set. Fig. 4.5 shows the ROC 
(Receiver Operator Characteristic) curves for the two systems in both training and testing set.

An ROC curve is a graphical representation of the trade–off between the true positive and false
positive rates for every possible cut–off. By tradition, the false positive rate is plotted on the
X axis and the true positive rate on the Y axis. This could also be described with 1–specificity
on the X axis and sensitivity on the Y axis. The ROC curve can be used for diagnostic test.
A good diagnostic test is one that has small false positive and high true positive rates across
a reasonable range of cut–off values while a bad diagnostic test is one where the false positive
rate goes up linearly with the true positive rate.

If the ROC curve climbs rapidly towards upper left–hand corner of the graph, this means that
the true positive rate is high and the false positive rate is low. One way to quantify how quickly
the ROC curve rises to the upper left–hand corner is to measure the area under the curve. The
larger the area, the better the diagnostic test. An ideal test will have an area of 1.0 which
means it achieves both 100% sensitivity and 100% specificity. On the other hand, if the area
is 0.5, then the test has effectively 50% sensitivity and 50% specificity which is no better than
flipping a coin.

Table 4.2 shows the accuracy of experiment and ROC statistics for our work and Osuna et al.’s 
[63]. It clearly shows that our ICA-based approach is better than the intensity-based approach in 
both detection rate and the number of false alarm. The dimensionality of the feature space in our 
approach is only 64, which is significantly smaller than the work in Osuna et al. as their feature 
space is as large as 283. We can see that our ICA-SVM approach can effectively reduce the 
dimensionality of the problem and still give promising results.

4.2.3 Evaluation

We also tested our detection method using real–world colour photos collected from Corel image
collection and Internet. The whole testing set contains 67 images (176 faces) with different
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Figure 4.5: ROC curve for the CBCL face data (top:training set, bottom: testing set).

sizes and resolutions. Since it is difficult to collect a representative set of non–face examples, we 
use the previous trained SVM classifier and the bootstrap method [83] to include more
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Training Set DR FAR ROC Area Standard Error
ICA-based 94.68% 2.58% 0.9902 0.0013
Intensity-based 89.87% 5.66% 0.9391 0.0086

Testing Set DR FAR ROC Area Standard Error
ICA-based 89.79% 4.75% 0.9444 0.0034
Intensity-based 84.24% 6.11% 0.8666 0.013

Table 4.2: ROC statistics for the CBCL data set.

non–face examples and retrain the initial classifier. The skin detection method is first applied
to each input test image to retain only skin–like regions. Then the input image is re–sampled
at different scales. A window of 19 × 19 2 pixels size scans through the image and the pixels
are extracted for face detection if more than 50% of the window pixels are counted as skin
pixels. Since the decisions are made at the same location for several times, it is possible that
detections will overlap so we use the voting techniques in order to reduce false alarms. This
technique arbitrates between two (or more) overlapping detections by maintaining only the
detections with the highest SVM score. The main drawback is that this heuristic sometimes
will remove overlapping alarms corresponding to slightly overlapping faces. Furthermore, voting
only removes a false alarm if it is close to another alarm with a higher SVM score, this heuristic
cannot therefore deal with isolated false alarms.

The detection rate for our method is 88.6% and the number of false positive is 27. Fig. 4.6
shows some results of our methods. Our method detects frontal faces and faces with shadows.
However occluded and rotated faces cannot be detected effectively due to lack of such examples
in the training sets. Fig 4.7 also shows the result of face detection under strong lighting changes.
The result suggests that our system fails to detect faces in a dark lighting condition where the
skin pixels cannot be detected effectively. However, our system works well for images exposed to
certain amount of light. In this situation, although the skin detection step gives more outliers,
the ICA-SVM classification step can still detect human faces effectively.

2This gives image patches at 361 dimension, which is then projected to the facial subspace for feature
extraction.
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Figure 4.6: Results of face detection using the SVM–ICA architecture.
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Figure 4.7: Results of face detection under different lighting conditions. From top to bottom,
images are exposed to different lighting conditions: dark lighting, normal lighting and excessive
lighting.
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Chapter 5

Conclusion and Future Work

In this thesis, various aspects of research on intelligent human computer interaction are dis-
cussed in the context of computer vision and machine learning. In this chapter, we summarise
our results of this work and sketch the future research directions.

5.1 Conclusion

In Chapter 3, we described different methods to detect human skin regions from still colour
images and subsequently compared and evaluated different skin models which was followed
by a discussion on their advantages and disadvantages. Experimental results suggest that the
performance of different skin models mainly depends on the distribution of skin samples in each
corresponding colour space. The tightness of the skin cluster and its overlapping with non–skin
samples are the main criteria in selecting appropriate skin model.

We have also presented an account of feature extraction for face detection within the PCA and
ICA framework in Chapter 3. We have compared these models from a statistical point of view
and showed that ICA is based on a stronger statistical concept than PCA and, consequently,
it provides a better probabilistic model. In addition, ICA is sensitive to higher–order statistics
other than just the second–order statistics and therefore it potentially captures the structural
information of the source better than PCA. From the discussion of ICA and PCA, we have
developed the underlying framework for facial feature extraction which is used in the SVM
learning architecture in Chapter 4.

In Chapter 4, we have described the algorithms of different SVM classifiers and the underlying
ideas. Experimental results are reported using the MIT CBCL Face Data and real world
photos in the task of face detection. The performance is evaluated using ROC curve, and the
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result suggested that our ICA-SVM approach can significantly reduce the dimensionality of the
feature space and hence speed up the computation time. This approach also captures better
facial features than features based on intensity only and gives promising performance.

5.2 Future Work

In Chapter 3, the ICA framework has been used for feature extraction. It is of great interest to
see how kernel–ICA can be used in the same way for facial feature extraction. Since kernel–ICA
can provide non–linear projection, we can formulate the feature space in non–linear subspaces,
which are naturally more suitable for highly non–rigid complex objects such as faces.

On the other hand, training a SVM for a large-scale problem is challenging because it is compu-
tationally intensive and the memory requirement grows with square of the number of training
vectors. Although skin detection helps to reduce the search space for potential face candidates,
it is interesting to develop methods other than skin detection to identify regions of interest.

Future work can also focus on learning the “face kernel”. Since we know that the performance
of SVM architecture highly depends on the kernel and the best kernel depends directly on the
problem at hand. If we could introduce our prior knowledge of human face into the kernel, we
can significantly improve the performance of the algorithm. Instead of tuning the parameters
of a given kernel, a more promising way is to try to learn the kernel matrix directly from the
data. However, some questions remain unanswered. For instance, it is not clear what the
best criterion is to optimise the kernel, and also how to design the kernel in a computationally
efficient way. Therefore, important developments can be expected in this domain.
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Appendix A

List of Publications

1. Tsz Ying Lui and Ebroul Izquierdo, “Scalable Object-based Image Retrieval”, IEEE In-
ternational Conference on Image Processing, ICIP2003, 14-17 Sep, Barcelona, Spain.

2. Sorin Sav, Vasileios Mezaris, Tsz Ying Lui and et al., “Region and Object Segmenta-
tion Algorithms in the Qimera Segmentation Platform”, 3rd International Workshop on
Content-Based Multimedia Indexing”, CBMI 2003, 22-24 Sep, IRISA, Rennes, France.

3. Tsz Ying Lui and Ebroul Izquierdo, “Automatic detection of human faces in natural scene
images by use of skin colour and edge distribution”, 5th International Workshop on Image
Analysis for Multimedia Interactive Services, WIAMIS 2004, April 21-23, 2004, Instituto
Superior Técnico, Lisboa, Portugal.
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