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Abstract

This research work addresses the problem of using concept-related indexing of image content

as a near-automatic way to perform semantic image annotation. The main objective is to pro-

vide a framework in which lexical information of visual interpretations and their components

(concept-related indexes) can be used to perform content-based image annotation.

Several design phases starting from the formation of an MPEG-7 learning space to the

construction of a robust semantic indexer were applied. Salient features of the proposed

framework for concept-related indexing of image content are:

Provide a suitable combination of low-level visual features. A specific concern is on defining

a structure in which MPEG-7 descriptor elements may be aggregated into feature vectors. A

structure is proposed to preserve the semantics embedded in descriptors, avoid description

overriding, and control the vector dimensionality using the minimum number of required

elements.

Unambiguous interpretation is reduced using a built-in knowledge base consisting of con-

cepts organized into a restrained lexicon.

A learning procedure, which applies partially supervised clustering, is an important com-

ponent within the framework when presenting the exemplars to the learner. A fuzzy partition

of the learning space is used not only to approximate semantically meaningful groups, but

also to facilitate long-term learning.

Semantic profiles are proposed to incorporate conceptualisation of image content into

clusters. The underlying relationship between features vectors is considered in defining the

semantic profiles. In addition, a matching procedure is proposed to estimate distance between

semantic profiles.

High scalability by using partitions rather than the entire learning space to add new image

concepts, or new image representations, is provided. This issue relates long-term learning and

contributes to improve generalization capabilities.

Experimental studies demonstrated how the proposed framework leads to a potential so-

lution of equipping content-based image retrieval systems with learnable concepts useful to

deal with meta-information.
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Chapter 1

Introduction

1.1 Motivation

The growing number of available multimedia information and the continuously increasing

number of tools for image processing is not only leading to new more appealing multimedia

functionalities, but also bringing new challenges to the research community. This section

introduces the two main subjects in whose this research is placed on: multimedia computing

and content-based image retrieval.

1.1.1 Multimedia Computing

The integration of media in consumer electronics is facilitating a wide variety of applications

ranging from multimedia cell phones, passing throughout personal digital assistants (PDA’s)

and camcorders, to high-definition interactive television. Multimedia content is delivery to

users located at offices, homes, and more often everywhere (i.e. commuters).

These trends have turned out the attention of researchers and practitioners in computer

vision, machine learning, pattern recognition, and other related fields towards an area that is

becoming increasingly important: multimedia computing.

Multimedia computing involves the capture, storage, manipulation, and transmission of

multimedia objects such as text, handwritten data, audio objects, still images, 2-D/3-D graph-

ics, animation, and full motion video [1]. It also relates to streaming media middleware,

multimedia data abstractions, continuous media representations, and media coding.

Although quite impressive advances can be observed in this relatively new area, there is

a growing need of technologies that can adapt multimedia content to diverse client devices

in the emerging “ubiquitous” or “pervasive” computing era [2]. Besides, there is also a need

of systems to enable computational interpretation and processing of multimedia content and

the automated generation or extraction of semantic knowledge from them [3].

Regarding to the interpretation of multimedia content, most of the research has been
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addressed to the problem of automated retrieval of syntactic and semantic data as a way to

overcome the information glut [4].

In this context, image understanding is finding a place within multimedia computing

technologies whereat it is playing a key role in the use of images to interface people and systems

(or machines) [5]. Accordingly, several systems such as QBIC, VisualSEEk, VisualGREP,

Virage have been developed [6]-[11] These systems follow the content-based image retrieval

paradigm proposed in the early 1990’s, in which images are represented using a set of feature

attributes for further indexing, browsing, and retrieval [12].

1.1.2 Content-Based Image Retrieval (CBIR)

Initially, CBIR systems used traditional methods to designate a passage from low-level visual

features to human understanding (of the image content) in order to provide a way that a

computer can execute the recognition process [13]. This bottom-up approach relies completely

on matching procedures at the lowest level of content representation.

CBIR systems based only on low-level matching procedures have poor performance for

semantically specific requests. Intuitively, two objects can be similar in their visual primitives

but semantically dissimilar. Besides, users do not think in terms of low-level representations.

Consequently, advanced CBIR systems have incorporated reasoning and learning capa-

bilities to establish an intelligent architecture, which enable them to produce effective and

accurate results according to the users’ requests. Accepting the role that high-level semantic

concepts play in the way human perceive images and measure their similarity, these systems

combine approaches to go from bottom to top and in the opposite way to generate interpre-

tations of image content. Such a combination is the foundation of the critical paradigm of

“bridging the semantic gap” [14].

1.2 Problem Definition

Content-based image retrieval has been the subject of ongoing research for several decades

evidencing its importance and the fact that many problems remain open. This section presents

one of the holy-grail challenges in multimedia computing, the sensory data gap, what is

followed by a definition of the problem in the proposed research work.

1.2.1 The Semantic Gap

Bridging the semantic gap refers to overcoming the obstruction known as the sensory data gap

[12], which expresses the difference between human perception and interpretation of audio-

visual information in all its different forms and the interpretation founded on a formal des-

cription derived from an automatic analysis of the machine [4].



1.2 Problem Definition 3

There are several challenges in incorporating high-level matching procedures (top-down

approach) in CBIR systems to conciliate human and machine interpretations. Some of these

challenges are:

• Subjectiveness. Interpretations of the image content are subjective due to the differ-

ent physiological and psychological responses of each beholder to visual stimuli. Most

of these interpretations expressed through semantic concepts are not directly related

to image attributes. Subjectivity could introduce ambiguity and inconsistency in the

interpretations.

• Adding interpretations. The most natural way to add high-level interpretations to ima-

ges is manual annotation. In addition to the subjectivity mentioned before, there are

more shortcomings when using manual annotation. It is either unfeasible or imprac-

tical to manually annotated large-scale image databases. It has an undesirable effect

in the system’s performance, which is stalled at certain point for lack of information

in decisions making without the necessary human factor. Moreover, there is not an

agreed-upon (or widely accepted) scene description language.

• Feature selection. Advanced CBIR systems require more robust schemes to identify

salient features of images that capture certain aspect of semantic content of these images.

This is a difficult task because only low-level features can be reliably extracted from

images and there is limited or no contextual information about the image content.

• High dimensional description space. These systems deal with the problem of integrating

heterogeneous sets of features and domain knowledge. Some representations of image

content use high dimensional feature vectors. The curse of dimensionality has an effect

upon the computational efficiency [15].

• Poor generalization. High dimensionality along with the tremendous variety of images

found within most semantic concepts derives in poor generalization beyond the training

set.

At this point, recognizing the toughness of these challenges, a natural question is regarding

to the feasibility of bridging (or at least narrowing) the semantic gap. This question has

motivated experimental studies based on results obtained in another disciplines. For instance:

Studies concerning visual recognition in pigeons support the hypothesis for a mechanism

that looks at collective low-level features for making the retrieval results more satisfactory

using comparatively high-level processing [16]. The birds are presented with large sets of

pictorial stimuli, including colour photographs, as part of a training procedure to respond

differentially to the stimuli according to an experimenter-defined class rule (e.g. “tree” and

“non-tree”).
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As indicated by Huber [16], “this type of experiment has received considerable attention...

because they imply that the pigeons’ classification behaviour is mediated by abstract, or

conceptual, rules, and therefore resembles the cognitive solution accomplished by humans.”

Assuming that it is possible to perform recognition without a complex conceptualisation

process; another question is concerning content-based image interpretation without first at-

tempting to recognize the image components (objects).

In this matter, Lipson et al. [17] does mention of a recognition strategy of scene content,

supported by psychophysical evidence, in which humans may holistically classify visual stimuli

before recognizing the individual parts. Furthermore, it is not always possible to divide an

image syntactically into smaller parts. Santini et al. [18] and Iqbal and Aggarwal [19] have

proposed approaches to capture user’s semantic understanding of images at a higher level

than the region representation.

Furthermore, automated linguistic indexing of pictures is a critically important area of

research because of its demonstrated potential to narrow the semantic gap [20].

Notwithstanding the challenges remain in certain degree open, the progress in perform-

ing “intelligent” processing of the image content and equipping CBIR systems with capa-

bilities for more efficient indexing, browsing, and retrieval is noticeable [ref http://www-

nlpir.nist.gov/projects/trecvid/]. Moreover, there are important advances in standardization

activities such as ISO/IEC MPEG-7 and its Visual Core Experiments as well as the recent

Still Image Search project (JPSearch) [ref www.jpeg.org]. These standards not only are con-

tributing to a better image representation and content analysis, but also to overcome another

challenging problem for CBIR systems as is to process information placed at remote image

databases.

Thus, progress in multimedia computing, more specifically in CBIR systems, is enabling

more accessibility to the ever-increasing amount of multimedia content and is providing means

to achieve users’ satisfaction.

1.2.2 Research Problem

Albeit the problem of narrowing the sensory data gap has been subject of extensive research,

it is still unsolved. Much work has been focused on overcoming the CBIRs’ challenges namely

subjectiveness, adding interpretations, feature selection, high dimensional description space,

and poor generalization.

Nack [4] pointing out drawbacks on automate data retrieval said that it seems “new”

problems are being solve with “old” solutions, which only furthers the crisis. He added that

approaches using low-level feature extraction for automated audio-visual media understanding

based on examples have been played out and failed so many times.

Though it is acceptable that some solutions are not suitable for the current challenges in

multimedia computing, is also recognized that traditional methods from computer vision and
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pattern recognition contribute in a significant way to the solution of the present problems. An

aspect to consider is the efficiency of such contributions in new computational environments,

i.e. networking and computer architectures.

Some reasons for the inadequacy of proposed solutions for automatic media understanding

are due to trying to find out semantics in low-level representations; using short-term learning

procedures; or pretending to build general purpose systems using domain specific knowledge.

These reasons should be considered by any mechanism, approach, or method that pursues

to narrow the semantic gap. In that way, concept-related indexing of image content is a

promising approach to incorporate semantic interpretations into low-level descriptions. In-

dexing entities using a set of concept-dependent and interrelated descriptors establish a solid

foundation to build concept-related (linguistic) models as part of the human-centred trends

in semantic image annotation [21].

This research work addresses the problem of using concept-

related indexing of image content as a near-automatic way to

perform semantic image annotation.

1.3 Objectives

The main objective in this research work is to provide a framework in which lexical informa-

tion of visual interpretations and their components (concept-related indexes) can be used to

perform content-based image annotation. Within this framework:

• The first aim is to propose a suitable combination of low-level image features.

• The second aim is to provide a mechanism to present the semantics, i.e. conceptualisa-

tion of image content, to the learner (CBIR system).

• The third aim is to provide high scalability. It facilitates long-term learning, in which

new concepts or new images are added to the system and only part of the training set

is involved in the learning update.

• The Fourth aim is to satisfy interoperability requirements. The framework is adjusted

to the ISO/IEC standard MPEG-7.

1.4 Research Contributions

A scheme derived from the fundamental paradigm and design methodology of pattern recog-

nition was followed in implementing the framework [22]. Several design phases starting from

the formation of an MPEG-7 learning space to the construction of a robust semantic indexer



1.4 Research Contributions 6

were applied. Salient features of the proposed framework for concept-related indexing of

image content are:

• A suitable combination of low-level visual features. Adhering to the de facto standard of

image description proposed in the ISO/IEC standard MPEG-7, the interest turned out

to the use of MPEG-7 visual descriptors for defining a learning feature space. A specific

concern is on defining a structure in which descriptor elements may be aggregated, in a

comprehensive manner, into feature vectors with a controlled dimensionality.

Proposed structure preserves the semantics embedded in descriptor elements, avoids de-

scription overriding, and controls the vector dimensionality using the minimum number

of required elements.

Statistical and soft computing techniques are used to evaluate the quality of proposed

structure regarding to its ability to discriminate examples ascribed to different semantic

interpretations [23].

• Unambiguous interpretation. Interpretations of image content referred as image concepts

are organized into a restrained lexicon (e.g. building, outdoor, animal, etc.) It is use to

reduce ambiguity in mapping images into many possible interpretations. The lexicon

is a built-in knowledge base consisting of basic semantic units denoted by symbols,

i.e. icons or keywords. Then, the CBIR system is treated as an intelligent entity that

associates image abstractions to its lexicon [24] [26].

• Learning procedure. An important component within the framework is the mechanism

when presenting the exemplars to the learner. Statistical and soft computing techniques

were evaluated in order to find out the most appropriate method to partition the learn-

ing space into semantically meaningful groups. The reason beneath this partitioning

approach is presented below (See high scalability).

Some of the techniques evaluated are: association rule mining, fuzzy inference systems,

radial basis function networks, support vector machines, hierarchical and partitioning

clustering [27] -[35].

For the specific problem domain defined to validate the framework, the best performance

was achieved by a proposed partially supervised clustering algorithm, which implements

the learning procedure [36].

• Semantic profile. Clustering approach incorporates prior domain knowledge, through

labelled data, using partially supervised learning. Resulting clusters are tagged with

concepts extracted from training images. The assigned set of concepts determines the

semantic profile of each cluster. The underlying relationship between features vectors

is considered in defining the semantic profiles. In addition, a matching procedure is
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proposed to estimate distance between image-cluster, image-image, or cluster-cluster

using their semantic profiles. This procedure combines low- and high-level matching.

• Semantic separability and generalization. The learner is presented with sets of feature

vectors representing samples of images that can or cannot be associated to certain con-

cept (or group of concepts). Separability is satisfied when descriptions are very different

for images associated to different semantic profiles. On the other hand, generalization

is achieved when descriptions contain very similar values for images under a similar

semantic profile.

• High scalability. As mentioned above, it is proposed a partition of the learning space into

groups relating certain semantic profile. Thus, when new data is added to the system

only part of the training set is involved in the learning update, which translates in high

scalability. It facilitates long-term learning, in which concepts are continually learned

and refined over time, not necessarily from the interaction with one single user in a single

session. Long-term learning contributes to improve the generalization capabilities.

1.5 Structure of the Document

The remainder of this document is organised as follows:

Chapter 2 contains a formal description of the image classification and annotation processes.

A concise summary of the state-of-the-art along with related representative research work

completed in the context of content-based image retrieval is presented.

Chapter 3 introduces the Multimedia Content Description Interface, MPEG-7, and the

visual descriptors used to build the feature space.

Chapter 4 presents the proposed partially supervised fuzzy clustering algorithm. It also

describes how structural data analysis uses prior domain knowledge to improve the learning

space partition.

Chapter 5 describes two case studies preceding the framework design. The first case study

relates to the usage of a fuzzy inference approach for building image classification. The second

one implements radial basis function network (RBFN)-based approach to perform two-class

and multi-class image classification.

Chapter 6 focuses on the design of the framework for concept-related indexing of image

content. It describes the main components of the framework. A proposed clustering ap-

proach along with details regarding semantic profile management is presented. Afterwards,

an evaluation of the framework is reported.

Chapter 7 presents an overall discussion followed by concluding remarks and introduction

of further work.

Additionally, complementary explanations are organised into three appendixes.



Chapter 2

Conceptual Image Analysis

Content-based image analysis is a research tool used to determine the presence of certain

concepts within an image or sets of images. Concepts are abstract or general ideas inferred

or derived from interpretations of image content. Therefore, recognition and interpretation

of image content require high-level symbolic processing [37][38].

An interpreter provides concepts, based on his knowledge and experience, after extracting

qualitative and quantitative information from the image content. Consequently, the recogni-

tion problem is considered a supervised learning problem [39].

Content-based image analysis is quite often been thought in terms of conceptual analysis, in

which a concept is chosen for determining its presence or absence. In other words, conceptual

analysis implies a categorization process.

Actually, recent studies carried out by Grill-Spector and Kanwisher [40], who study how

humans perceive images, show that conceptual image analysis is seemingly connected to image

categorization. Some of their results suggest that: “detection does not occur prior to and

independently of categorization.”

Following section introduces conceptual analysis along with some useful definitions pre-

sented in [41]. Next, Sect. 2.2 describes the correspondence between conceptual analysis and 
multi-class classification. In Sect. 2.3 a concise summary of the state-of-the-art along with 
related work is presented. Sect. 2.4 describes the advances of this research with respect of the 
current challenges in the field. Remarks concerning potential directions for future work are 
presented at the end.

2.1 Image Abstraction and Interpretation

In the context of this work, the term image refers specifically to still pictures represented and

displayed in a digital format by subdividing it into small equal-sized and shaped areas, called

picture elements or pixels. Each pixel represents the brightness of certain area with a numeric

value or digital number.
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Image digitisation is carried out through a sampling process that divides an analogue image

in a 2-D continuous space into an N ×M image in a 2-D discrete space. An intersection of a

row (1, . . . , N) and a column (1, . . . ,M) corresponds to a pixel.

Visual primitives are extracted automatically from digital images using some measure-

ments at pixel level. Natural (luminance, texture, etc.) and artificial (colour histograms,

etc.) characteristics are combined to generate multi-modal distinguishing primitives called

image abstractions.

Multi-modal visual primitives with a well-defined syntax and semantics are known as

Descriptors. In order to simplify management of image abstractions, descriptors are organized

into feature vectors.

On a higher level of abstraction, a human interpreter who examines digital imagery dis-

played on a computer screen provides visual interpretations of image content (also referred to

as image concepts).

Interpreters make use of granules of information connected at different levels of abstraction

as illustrates Fig. 2.1.

Visual interpretations

Image
(Raw data)

Image abstractions
(Descriptors)

Feature vectors

Image concepts

Information granules
Connection links
Abstraction levels

Fig. 2.1: Granules of information at different abstraction levels. Raw data consists of elementary units
together with some general attributes such as encoding/decoding format. Primitives such as tone, shapes,
and texture characterize Image abstractions. Image concepts connect visual interpretations to feature vectors
regarding to objects or events within the scene displayed in the image

Pictures can be displayed as monochrome (black and white) images, or as colour images by

combining bands representing different wavelengths. Colour images combine and display in-

formation digitally using different channels on a given colour space (e.g. RGB, HSV, YCrCb).

All colour spaces are three-dimensional coordinate systems. In the case of RGB colour space,

data from each channel is represented in one of the primary colours (red, green, and blue). De-

pending on the relative brightness of each pixel in each channel, the primary colours (or their
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equivalent values in another colour space) are combined in different proportions to represent

a different colour. Fig. 2.2 depicts the RGB and HSV colour spaces.

Red
(255,0,0)

Green
(0,255,0)

Blue
(0,0,255)

Magenta
(255,0,255)

Cyan
(0,255,255)

White
(255,255,255)

Black
(0,0,0)

Yellow
(255,255,0)

(a) RGB space

BlueCyan

Green

Yellow Red

Magenta

White
(v=1)

Black
(v=0)

Gray scale

Value (V)

Saturation (S)

Hue angle (H)

(b) HSV space

Fig. 2.2: Three-dimensional coordinate RGB and HSV systems

Visual interpretation is physically limited to spatial, spectral, and radiometric resolutions.

Spatial resolution is determined by the size of the smallest possible object that can be detected.

Spectral resolution describes the ability of a sensor to define fine wavelength intervals. The

radiometric resolution of an imaging system describes its ability to discriminate very slight

differences in energy.

Besides, visual interpretation is constrained by the closeness of the colour spaces to the

human system vision and the amount of images to be analysed at a time.

A shortcoming of visual interpretation is its subjectiveness, meaning that the results will

vary with different beholders.

In spite of these limitations, information captured from visual interpretations is required to

enhance image descriptions as a prelude to automatic classification, which enables conceptual

analysis of large number of images.

Automated classification carried out by manipulating image descriptions in a computer

produces more objective and generally more consistent results. However, there is a short-

coming in determining the validity and accuracy of the results. Consequently, automated

classification rarely is performed as a complete replacement for manual (visual) interpreta-

tion. Instead it is used to supplement and assist the conceptual image analysis.

2.2 Classification and Conceptual Analysis

Conceptual image analysis is often approached by computing low-level features, which are

processed with a classifier engine for inferring high-level information about the image.
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This kind of high-level (or semantic) classification relates the problem of assigning an

image to one or more specified categories based on interpretations of its content.

In designing the classifier, the attention is focused on using aggregation of classification

outcomes to perform concept-related indexing of images as a prior step in the road towards

semantic image annotation.

2.2.1 Semantic Classification

The classification task is addressed to grouping image features into broad classes such as city

views, nature, etc. Each class is linked to an image concept. Other more specific classes,

such as different type of buildings, may not be easily distinguishable. In designing a semantic

classifier, problem domain knowledge is provided by an expert user. In the case of approach-

ing image annotation by classification, the expert user would be a professional annotator.

Formally, the classification problem is defined as follows:

Let i = (i11, i21, . . . , iM1, i12, . . . , iMN) be an image, D = {d1, . . . ,dND
} be a set of image

descriptions extracted from i, X = {x1, . . . ,xNX
} be a set of feature vectors built with data

obtained from D, and Ω = {ω1, . . . , ωNΩ
} be a set of classes. The multi-class classification

problem is stated as: Learn a function

f : X 7→ Ω , (2.1)

where classes in Ω relate visual interpretations about image content, which is represented

by xi. f can be decomposed into a number of binary (two-class) classifiers

f =
∨

1≤k≤NΩ

fk (2.2)

fk : <n 7→ {0, 1} (2.3)

fk(xi) =

{
1, xi ∈ ωk

0, xi ∈ not(ωk)
(2.4)

Subsequently, classification outcomes are aggregated as follows:

L =
⋃

ωk( `j

`j , (2.5)

where `j is a concept-related symbol (label) associated with class ωk.

A general semantic image classification process is depicted in Fig. 2.3. As indicated above,

its input is a set of features extracted from an image; its output is a discrete label for the

concept describing some visual interpretation of the image content. The classification module
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aggregates a number of binary (concept-related) classifiers.

Feature
Extraction

Semantic Classifier

Image
(Input)

Class K

Binary Classifiers

...

Class 1

Image Concept
(Outcome)

Problem Domain
Knowledge

Professional Annotator

Fig. 2.3: Overview of a general semantic image classification process

Semantic classification deals with challenging problems at the learning stage such as:

• Specific vs general labels. General labels (hypernyms) are more appropriate for training

purposes. Otherwise, it will be too difficult to generalize beyond the training set. Fig. 2.4

shows an image labelled as “Temple”, which is too specific. It could be linked to a

broader class using the label “Buildings” appearing in third position within the same

list.

• Training images selection. Exemplars are present to the classifier during learning process

as a set of input-output pairs or images previously labelled. In order to avoid ambiguity

that furthers misclassification, it is required to provide training images labelled appro-

priately regarding to the concept presented to the learner. Fig. 2.4 shows samples of

pictures that can mislead the classifier if they are presented to the learner as exemplars

of “building” images.

Fig. 2.4: Samples of variety of labels. Presenting these pictures to the learner as exemplars of “building”
images can mislead the classifier

The applied concept-related classification is useful to describe images with a controlled vo-

cabulary. However, it is impractical for problem domains involving large number of concepts.

An alternative is to use classification outcomes as entries to a more elaborated interpretation

environment, as the one provided by semantic ontology models (Mezaris et al. [42]).
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Bearing this in mind, classification outcomes are further used to create a set of concept-

related indexes of the corresponding image. Concept-related indexes can be used as pre-

annotation sets as well as mechanisms to access the branches in an ontology map. At the

end, the system will come out with a set of labels to annotate the image.

2.2.2 The Lexicon

Concept-related indexes facilitate content-based image retrieval using symbols relating visual

interpretations that is what concepts are about. As mentioned above, indexes are treated as

entry points to a more elaborated representation of the problem domain knowledge, i.e. a

computational ontology.

Computational ontology differs from philosophical ontology as it refers to a rooted directed

acyclic graph (the data structure) in which every node stands for a concept and every arc

connects nodes by IS-A links. For the sake of clarification, Fig. 2.5 illustrates the usage of

concept-related indexes as entries to a computational ontology. Concept building serves to go

down and reach specific instances such as apartment or to go up and retrieve general instances

such as structure.

index-name: building

index-definition: a structure that has a roof and walls
and stands more or less permanently in one place

index-entry to sub-graph:
entity
↪→ object; physical object

↪→ artifact; artefact
↪→ structure; construction
↪→ building, edifice
↪→ clubhouse; club
↪→ chapterhouse
↪→ center; centre
↪→ bowling alley
↪→ bathhouse; bathing machine
↪→ aviary; bird sanctuary; volary
↪→ architecture
↪→ apartment building; apartment house
↪→ abattoir; butchery; shambles; slaughterhouse

Fig. 2.5: Index relating concept building and its usage as entry to a computational ontology containing such
a concept [wordreference.com]

Supporting of computational ontology is beyond the scope of this research work. Even-

though, it serves to show implications on choosing certain concepts to represent visual inter-

pretations.
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Chosen concepts are organized into a lexicon. It is proposed the usage of a constrained

lexicon. Semantic constraint refers to substitution of specific concepts, i.e. meronyms and

hyponyms, by more general ones, i.e. holonyms or hypernyms. In addition, all synonyms

have to be replaced by a common concept. Experiments show that constraining the lexicon

the performance is increased significatively.

For instance, professional annotations of Corel images as portrayed in Fig. 2.6 involve

more information: title, caption, categories, and concepts [ref fotosearch.com/corel]. These

annotations can be simplified substituting them by some holonyms.

Title, Caption:
Categories:
Concepts:

Chicago, Sears tower from lake Michigan
Cities and Regions, Travel
buildings, clouds, tower, and water

Buildings Outdoor

City view

Concept-related
indexes:

Fig. 2.6: Sample of Corel annotations consisting of title, caption, categories, and concepts. Specific concepts
are simplified using concept-related indexes

2.2.3 Semantic Annotation

The term annotation refers to the use of auxiliary symbols that are utilised to modify the

interpretation of other symbols. These annotation symbols typically do not have the same

kind of meaning as the symbols that they annotate [43].

On the other hand, semantic annotation is augmentation of data to facilitate automatic

recognition of the underlying semantic structure of image content. This kind of annotation is

expressed by means of symbol’s structures, where each symbol is either a keyword or an icon.

In the context of conceptual image analysis, symbols are basic semantic units representing

image concepts. Ambiguous interpretations are avoided using a symbol domain, which is

organised into a controlled lexicon.

Based on the definition provided by Intille and Bobick [44], image annotation is the task

of generating descriptions of still pictures that can be used for indexing and retrieval. Such

descriptions are aimed to associate semantic meaning with image to improve the content-based

retrieval.

For their generation, image abstractions are processed and linked to image concepts in a

complex interplay among the expert, the images, and their visual interpretations [12] (See

Fig. 2.1).
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Image annotation requires uniform models for representing image content and facilitating

the use to several users. Therefore, interoperability of image descriptions as well as durable

and stable lexicons is a requirement to support sharing and reusing annotations among users.

In order to facilitate the description of the process implementing the annotation task, the

notation proposed by Smeulders et al. [12] is used.

The image annotation process denoted by A can be summarised as

{S(0), i, L}A{S(t),L} (2.6)

where S(0) is an abstract non-annotated image space defined as a tuple {X, L}, where X

is a set of images features, L is a controlled lexicon, and i is a selected image to be annotated.

The process A begins creating an instance of the abstract non annotated image space

S(0) = ∅ . (2.7)

Afterwards, the annotation process A maps S(0) into the annotated image space in an

interactive annotation session, which is a sequence of annotation spaces

S(0) ª S(1) ª, . . . , ª S(t) (2.8)

with

S(t)
.
= A(S(t−1)) . (2.9)

The result is an annotation set L ∈ S(t) such that

L = {`j | `j ∈ L; 1 ≤ j ≤ NL} . (2.10)

Fig. 2.7 summarises the semantic image annotation process.

Image Abstractions

Problem
Domain Knowledge

Still Picture

Professional
Annotator

 Visual Interpretations

Lexicon

Image Analysis
Semantic

Profile

Content-based
Annotations

Fig. 2.7: Overview of the semantic image annotation process. The inputs are image abstractions and visual
interpretations that provide the image analysis process with numerical representations and semantic concepts,
respectively. The lexicon constrains set of concepts to be used during the analysis to the problem domain
knowledge. The outcome is a semantic profile
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This research work is based upon the hypothesis of augmentation of data extracted from

image abstractions, i.e. by learning and then adding image concepts through classification,

can be used as a near-automatic way to annotate images in CBIR systems. By comparing

Eq. 2.5 and Eq. 2.10 it becomes noticeable that the annotation process can be approached as

a multi-class classification problem.

2.3 State-of-the-Art

Many ad hoc methods and techniques have been proposed and developed to perform con-

ceptual image analysis. It is evidenced in the vast amount of publications found in journals, 
conference proceedings, and books that are dedicated to its study. As a result, the last decades 
witnessed a genuine plethora of approaches to image description, formalization, and classifi-

cation (Rosenfeld [53], Smeulders et al. [12], Eakins [46]). This tendency is not surprising at all 
given a rapidly growing interest in processes and efficient mechanisms of image annotation, 
categorization, and organization as well as retrieval.

This section outlines the steps in the semantic annotation process as portrayed in Fig. 2.7.

It summarizes the state-of-the-art with respect to each step.

2.3.1 Image Abstractions

Image abstractions are extracted automatically from digital images using some measurements

at pixel level. However, there is a recognized limitation in the usage of pixel-based repre-

sentations of images to perform content-based analysis. In an attempt to resemble the way

humans detect salient features from image content, extraction techniques have been oriented

towards region-of-interest (ROI) approaches.

Barnard et al. [54] used an analogy between images and text to perform classification based 
on semantic units. Images are composed of regions and objects, and text is composed of words, 
or more abstractly, topics or concepts. Duygulu et al. [55] considered the problem of finding 
such correspondences as the translations of image regions to words, similar to the translation of 
text from one language to another. They investigated the effect of feature sets on the 
performance of linking image regions to words.

Paterno et al. [56] proposed an approach to semantic labelling of image regions. It is based 
on a fuzzy labelling method that measures the confidence based on the orthogonal distance of 
an image region’s feature vector to the hyperplane constructed by support vector machines. 
The confidence measures assigned to a region represent the signature of the region and are used 
for region matching during image retrieval.

Though it is observed a tendency on applying image segmentation for a more accurate

recognition of image content, there are also a steamed number of approaches tackling the

problem of feature extraction without partitioning or segmenting the image. Furthermore,
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images are designed to convey a certain message, but this message is concealed in the whole

organization of the image, and is not always possible to divide it syntactically into smaller

parts.

Lipson et al. [17] proposed an approach to classify scenes without first attempting to recog-

nize their components. The strategy is well suited for complex scenes, especially those that 
consist mostly of natural objects. Gu´erin-Dugu´e and Oliva [57] obtained results 
supported by psychological experiments showing that human subjects rapidly capture the 
context of the scene before recognizing its individual parts. Similarly, Iqbal and Aggarwal 
[19] and Santini et al. [18] presented approaches at which segmentation and detailed object 
representation are not required.

2.3.2 Capturing Knowledge and Interpretations

Visual interpretations of the image content provide lexical information that attached to image

abstractions expand classic conceptual image analysis. It is referred to as semantic annotation.

Lexical information is useful to introduce problem domain knowledge. It consists of learnable

and non-learnable concepts.

A learnable concept is defined as a short program (finite state automata) that distinguishes 
some natural inputs from some others. According to Valiant’s model, a concept has been 
learned if a program for recognizing it has been deduced, i.e. by some method other than the 
acquisition from the outside of the explicit learning program (Valiant [58]).

Shvaytser [59] pointed out that a learnable concept should be learned from a polynomial 
number of examples and using polynomial bounded computational resources.

Systems that learn and adapt learnable concepts represent one of the most important

trends in computer vision research and may provide the only solution to the development of

robust and reusable systems (Heisele et al. [39]).

In this regard, Saitta and Bergadano [60] presented an interesting comparative analysis of 
results from pattern recognition and theoretical machine learning regarding to the problem 
of learning concepts. Special attention is devoted to the learning framework proposed earlier 
by Valiant [58].

Qiu et al. [61] used machine learning to learn high-level concepts from examples of similar 
images chosen by humans. It showed how different representation schemes may affect many 
aspects of a machine learning system, including computational complexity and performance.

Santini et al. [18] proposed that the meaning of an image is characterized by the following

properties: It is contextual, it is differential, and it is grounded in action. Subsequently,

they argued that images do not have an intrinsic meaning, but that they are endowed with a

meaning by placing them in the context of other images and by the user interaction. From this

observation, they conclude that in an image database users should be allowed to manipulate

not only the individual images, but also the relation between them. It suggests working with
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group of images rather than one image at time.

Nakazato and Huang [62] used ImageGrouper, a group-oriented interface for digital image 
search and organization, to support incremental image annotation applying relevance feed-

back. Bhanu and Dong [63] proposed a framework for learning concepts based on retrieval 
experience, which combines partially supervised clustering and probabilistic relevance feed-

back. Yu et al. [64] examined how prior domain knowledge might be incorporated into concept 
learning when only limited sample data is available.

There are also several interactive approaches that have been proposed to enable long-term 
learning (Yoshizawa and Schweitzer [58]) and system’s adaptation (Rui et al. [66], Bhanu and 
Dong [63]).

2.3.3 Image Analysis Techniques

Gorkani and Picard [67] considered using global texture properties of images as a quick way to 
make a first pass at higher-level problem; such as annotating or retrieving a particular set of 
digitised vacation photos. The work has been used as reference for a large number of researches 
on scene classification. Szummer and Picard [68] demonstrated an improvement in 
classification performance when computing features on sub-blocks, classifying the sub-blocks, 
and then combining the results.

Vailaya et al. [69] used an approach to determine the discriminative power of features for 
further classification of images based on inter-class and intra-class distance distributions. 
Vailaya et al. [69] applied a robust scheme to identify salient image features and capturing a 
certain aspect of the semantic content. They classified vacation photographs into a hierarchy 
of high-level classes. Results show how specific low-level features can be used in constrained 
environments to perform conceptual image analysis.

Loui and Savakis [71][72] dedicated their research work to automatic classification of events 
in general consumer pictures. The difficulty of the task is increased when considering limited or 
no contextual information about the picture content.

In [73], Luo et al. proposed an architecture model based on belief networks that is suitable 
for semantic understanding of consumer pictures. Salient features of this kind of pictures are: 
they have unconstrained picture content and are taken under unconstrained imaging 
conditions; they serve the purpose of recording and communicating memories and therefore is a 
certain degree of agreement among observers in spite of the inherent ambiguity in terms of 
subjective opinion. Luo and Savakis [74] also used semantic cues (e.g. sky, grass) for improving 
the classification performance obtained by low-level features alone.

Wang et al. [75] presented an approach to find images containing buildings. Global and 
local distribution of directional edges along texture information is used to represent the image 
semantics.

Boutell et al. [76] introduced spatial image recomposition and simulated temporal image
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recomposition. The first one is designed to minimize the impact of undesirable composition

produced by foreground objects. The latter is designed to minimize the effect of colour changes

occurring over time. Image recomposition is applied on classification of sunset scenes.

Mojsilovic and Rogowitz [87] used a method for semantic categorization of photographic 
images, based on low-level image descriptors derived from perceptual experiments. The 
method is proposed as groundwork for better organization of (and retrieval from) large image 
databases.

Special attention has been paid to Support Vector Machines (SVMs) classifiers.

Barla et al. [88] investigated the potential of SVMs to solve semantic image classification 
problems. SVMs classifiers learn from a relatively small number of samples (Jain et al. [89]). 
The class (or label) of a new input is determined by a linear combination of the kernel functions 
evaluated on a certain subset of the examples –the support vectors and the input. The 
coefficients of the combination are obtained as the solution to a convex optimisation problem 
corresponding to the learning stage. The choice of the kernel relies on prior knowledge of the 
problem domain.

There are two important issues for developing SVMs classifiers. One is how to extend two-

class to multi-class problems efficiently. Several methods have been proposed, such as one-

against-one, one-against-all. The other issue of SVMs classifiers is to overcome the problem of 
overfitting in two-class classification. Huang and Liu [98] proposed the use of fuzzy support 
vector machines to deal with outliers or noise because of overfitting problem.

Chapelle et al. [91] presented an approach to overcome poorly generalization on image 
classification tasks, because of the high dimensionality of the feature space. They used a 
SVMs approach because its high generalization performance even when the dimension of the 
input space is very high.

Brunelli and Mich [92] introduced a statistical framework to analyse effectiveness of his-

tograms in image comparison tasks. Results showed that it is possible to minimize the size 
of the image descriptors while maintaining good effectiveness.

Serrano et al. [93] presented an improved SVM-based approach to indoor/outdoor clas-

sification. The approach uses a low dimensional feature set in which a low computation 
complexity is achieved without compromising the accuracy.

Yan et al. [84] applied support vector machine ensembles to adapt binary SVMs to multi-

class classification and address the high computational cost for training.

Tsai et al. [85] implemented concept-based indexing by combining SOMs and SVMs in a 
two-stage hybrid classifier. Prabhakar et al. [96] proposed another hybrid approach. The 
classification of images as either picture or graphics is performed by a combination of a rule-

based tree classifier and a neural network classifier.

Dong and Yang [80] combined SVMs and kNN for hierarchical classification of web ima-

ges. A threshold strategy called “HRCut” is proposed because of the difficulty in applying
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traditional strategies (e.g. rank-based threshold) to decide the winner category for each image.

M. R. Naphade and Basu [81] used SVMs and active learning in a very similar way than 
Zhang and Chen [107]. Essentially it is an extension of the method proposed by Tong and 
Chang [108]. Active learning enables the learner to use its own ability to respond to collect data 
and to influence the world it is trying to understand.

2.3.4 CBIR Systems

Several systems implementing similar or closely related processes to the one illustrated in

Fig. 2.7 have been implemented.

Wang et al. [109] presented SIMPLIcity (Semantics-sensitive Integrated Matching for Pic-

ture LIbraries), an image retrieval system, which uses semantics classification methods, a 
wavelet-based approach for feature extraction, and integrated region matching based upon 
image segmentation.

Zhang and Chen [107][110][111] proposed a framework for active learning during 
annotation process in CBIR systems. It includes three major aspects: feature extraction, 
high dimen-sional indexing and system design. Among the three aspects, high dimensional 
indexing is important for speed performance; system design is critical for appearance 
performance; and feature extraction is the key to accuracy performance.

Laaksonen et al. [112][113] used PicSOM, a neural-network-based CBIR system built upon 
the query by pictorial example and relevance feedback principles, to combine high-level se-
mantic concepts and the low-level features. SOM stands for Self-organizing map, which is used 
for unsupervised, self-organizing, and topology-preserving mapping from the image descriptor 
space to a 2-D lattice of artificial neural units.

Sheilholeslami et al. [114] utilized SemQuery, a hierarchy of semantic clusters, to support 
visual queries based on heterogeneous features. A multi-layer neural network model is used 
to merge the results of basic queries on individual features. The input to the neural network 
is the set of similarity measurements for different feature classes and the output is the overall 
similarity of the image.

Wang et al. [20] employed ALIP, a 2-D multi-resolution hidden Markov model, to categorize

pictures. In ALIP only the statistical models for the involved concepts need to be trained or

retrained.

Wang et al. [115] used SemView (a semantic-sensitive distributed image retrieval system) 
to support low- and high-level retrieval on distributed image databases. The system provides 
the users with the facility to manage large image databases in an automated, flexible, and 
efficient way.

Smith et al. [116] developed an approach for integrating features, models, and 
seman-tics in a CBIR system using MPEG-7 descriptors. Currently, this kind of 
approaches has been used in developing a multimedia analysis and retrieval systems such 
as MARVEL (ref
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[http://www.research.ibm.com/marvel/]).

2.3.5 Summary of Selected Experimental Studies

Tab. 2.1 summarizes experimental studies of selected references cited above. This overview is

instructive in the sense it underlines the diversity of approaches taken, provides insight into

a quality of classification given some collection of categories (classes) under consideration. It

also shows the diversity of sources of images used in these experiments (which unfortunately

does not allow to compare obtained classification rate however gives some qualitative sense

as to the possible outcomes).

While the differences are quite significant, there are some commonalities when it comes

to the most fundamental paradigm of classification. Classification errors are very different

however any close comparison is not feasible given different semantic categories handled by

each system. It is noticeable that in many cases there is some pre-processing aimed at dimen-

sionality reduction.

2.4 On the Road to Semantic Annotation

Contributions listed above show how robust and efficient pattern recognition techniques en-

able automatic interpretation of image content. The primary goal of pattern recognition is

supervised or unsupervised classification.

There is a special interest to evaluate intermediate methods, i.e. semi-supervised learn-

ing, to incorporate knowledge through labelled data and make use of unlabeled data as well 
(Pedrycz [118]). Jain et al. [97] in their detailed summary of well-known pattern recognition 
methods posed unsupervised classification as a clustering/categorization task based on the 
similarity of patterns. Semi-supervised clustering exploits problem domain knowledge to build 
classifier models that group patterns into groups with some semantic meaning.

The proposed framework applies unsupervised cluster in a first stage to reveal any under-

lying structure in the data sets without requiring prior information. Exploiting prior domain

knowledge, a structural data analysis is proposed to determine proximity and overlapping

between semantic groups, which leads to indexing errors.

Structural data analysis along with prior domain knowledge is used to guide a partially 
supervised fuzzy partitioning of the learning space. Proposed algorithm based on the work 
presented by Pedrycz and Waletzky [119] shows promising results in the context of 
conceptual image analysis.

Clustering and structural data analyses are used as exploratory data analysis to move

cluster prototypes towards regions in the learning space containing relevant exemplars.

In addition, a method to determine the semantic profile of each cluster is introduced. The

semantic profile facilitates indexing and is appropriated for further retrieval based on concept
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Tab. 2.1: Summary of various research pursuits carried out in image classification objectives, categories of
interest, pre-processing, and feature space as well as classification results
Ref Objective Classes Image set Preprocessing Feature space Classification

results
[96] Scene classification

using support vector
machines (SVMs)

Indoor/Outdoor 600 images
mainly from
the Web

Texture represented
by gray-level co-
occurrence matrices

Colour histograms
and Texture

Accuracy of 93.1%

[117] Multi-label image
classification

Beach, Mountain,
Sunset, Field,
Fall foliage, etc.

2,400 photos
from Corel
and personal
collection

Images divided into
49 blocks using a 7x7
grid.

Spatial colour mo-
ments

Accuracies:
Single-label 79.5%
Multi-label 81.8%

[91] Histogram-based
image classification
using SVMs

Airplanes, Birds,
Boats, Buildings,
People, Fish, and
Vehicles

1,400 from
Corel7 and
2,670 from
Corel14
database

Colour histograms Classification
error of 11% on
Corel categories
and 16% on more
generic objects

[67] Image classification
for annotation or re-
trieval

Landscape
City/Suburb

98 digitized
photos

Images divided into 16
equal-size rectangular
regions

Global texture fea-
tures

Accuracy above
90%

[74] Classification via
integrating lowand
mid-level features

Indoor/Outdoor 1,300 images Colour and texture;
sky and grass fea-
tures

Accuracy using
colour, texture,
sky, and grass
equal to 90.1%

[87] Capture the seman-
tic meaning of an
image

People, Ani-
mals, Buildings,
Nature, etc.

393 images
for training
and testing

Multidimensional
scaling and hierarchi-
cal clustering

40 image-processing
features

93% of accuracy
achieved on the
testing set

[93] Computational effi-
cient image classifi-
cation using SVMs

Indoor/Outdoor 1,200 con-
sumer pho-
tographs

Colour quantization,
colour balance, sub-
sampling and 4x4 tes-
sellation

Colour in the LST
color space Wavelet
texture features

90.2% of accuracy

[68] Image classification Indoor/Outdoor 1,343 digi-
tized photos

Region-based parti-
tion and multistage
classification

Colour and global
textural features

Accuracy above
90.3%

[85] Image classification
using hybrid neural
networks

25 categories:
Animal, Stone,
Building, Snow,
etc.

10,000 from
Corel stock
collection

Sub-sampling,
Quadtree decomposi-
tion, Self-Organizing
Maps (SOMs)

Colour histograms
Textural wavelet
decomposition

Highest accuracy
is 90% in three
categories

[63] Hierarchical image
classification for
content-based index-
ing

Indoor/Outdoor
City/Landscape
Sunset/Forest
/Mountain

6,931 ima-
ges various
sources

Multidimensional
scaling to generate
3D feature space
K-Means to identify
group of images

Colour moments,
Edge direction,
Coherence vectors,
Spatial moments

Accuracies of
90.5%, 95.3%,
and 96.6% for
the corresponding
classification tasks

[69] Semantic-based clas-
sification

City/Landscape 2,716 pho-
tos various
sources

Features are extracted
from the entire image
or image subsections

Edge direction (and
colour), coherence
vector

Accuracy above
93.9%

[75] Building image clas-
sification

Building/Not-
Building

1,791 images
from Corel

Image partition into
16 equal-size regions

Edge histogram, Ga-
bor texture

90.6% building
and 74.8% not-
building

matching.

In summary, the proposed framework applies a consistent learning strategy that exploits

prior knowledge and data information. It embodies a partially supervised clustering algorithm

that overcomes many of the drawbacks found in applying clustering as a classification method.

A learning space equipped with cluster prototypes and semantic profiles, boosts the indexing

procedures of learnable concepts.



Chapter 3

An MPEG-7 Learning Space

In designing the framework for concept-related indexing of image content, the interest turned

out to the use of MPEG-7 descriptors for defining a learning space. Specifically, there is a

concern on the structure of the feature vectors. MPEG-7 descriptors are equipped with a well-

defined syntax and semantics that facilitate representation of image abstractions. Therefore,

proposed structure, in which descriptor elements will be aggregated, should be defined in a

comprehensive manner and considering important issues such as vector dimensionality.

The problem of combining descriptions has been tackled using either multi-feature vec-tors 
or multiple feature spaces [120][121]. The approaches using multi-feature vectors break down 
into high-dimensional space, which drastically reduce efficiency of storage and retrieval. 
Harsanyi and Chang [122] introduced an unsupervised feature extraction technique applying 
an orthogonal subspace projection that reduces the data dimensionality. Kokare et al. [123] 
used tree structured wavelet decomposition for dimensionality reduction of texture features. 
The work presented by Wu et al. [124] reduces dimensionality preserving the local topology of 
the original space. Dorado and Izquierdo [125] proposed an adaptive clustering method to 
select representative features.

On the other hand, approaches apply on multiple feature spaces require an effective method 
to integrate the matching results from each space. Smith et al. [116] detailed a completed 
taxonomy of the different searching and matching problems on multi-feature spaces. Further-

more, Laaksonen et al. [112] proposed a framework that integrates a number of parallel tree 
structured self-organising maps.

The rest of this chapter is organized as follows: Sect. 3.1 introduces the Multimedia

Content Description Interface, MPEG-7. Sect. 3.2 summarises some considerations in the

construction of the feature space and details the components of feature vectors using the

proposed structure. Then, an empirical evaluation of feature vector quality is carried out in

Sect. 3.3. Sect. 3.4 summarizes the chapter.
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3.1 MPEG-7

MPEG-7, formally known as Multimedia Content Description Interface is an ISO/IEC stan-

dard developed by the Moving Picture Experts Group (MPEG) for description and search 
of audio and video content [ref www.chiariglione.org/mpeg/]. In contrast with the early 
standards known as MPEG-1, MPEG-2, and MPEG-4 that are focused on coding and rep-

resentation of audio-visual content, MPEG-7 moves forward and becomes more general by 
embracing description of multimedia content [126].

MPEG-7 has emerged as a cornerstone of the development of a wide spectrum of appli-

cations dealing with audio, speech, video, still pictures, graphics, 3D models, and alike. In a 
nutshell, the MPEG-7 environment delivers a comprehensible metadata description standard 
that is interoperable with other leading standards such as SMPTE Metadata Dictionary, 
Dublin Core, EBU P/Meta, and TV Anytime; refer to www.ebu.ch/trev 284-mulder.pdf. 
Initially, MPEG-7 was focused more on web-based applications and annotation tools (e.g. 
Izquierdo et al. [127], Mezaris et al. [42], Smith and Lugeon [128]). Nowadays, it is being 
drifted to other domains such as education, video surveillance, entertainment, medicine and 
biomedicine.

The ultimate objective of MPEG-7 is to provide interoperability among systems and ap-

plications used in generation, management, distribution, and consumption of audio-visual 
content descriptions (see Fig. 3.1). Such descriptions of streamed (live) or stored on var-

ious media help either users or applications in identifying, retrieving, or filtering essential 
audio-visual information, cf. [126][129].

Description
Production
(Extraction)

Description
Consumption

Standard Description
Normative part of
MPEG-7 Standard

Fig. 3.1: Scope of MPEG-7

MPEG-7 specifies standardised Descriptors and Description Schemes for audio and video,

as well as integrated multimedia content. Also standardised is a Description Definition Lan-

guage that allows new Descriptors and Description Schemes to be defined.

MPEG-7 descriptors define syntax and semantics of features of audio-visual content.

MPEG-7 allows these descriptions at different perceptual and semantic levels. At the lowest

abstraction level, such descriptors may include shape, texture, and colour. At the highest

abstraction level, they may include events, abstract concepts, and so forth. Tab. 3.1 presents

a list of the basic MPEG-7 visual descriptors applicable to still images.

During the collaborative phase of the MPEG-7 standard, descriptors were incorporated

into a common model called the eXperimentation Model or XM, which constitutes a draft of
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Tab. 3.1: List of basic MPEG-7 visual descriptors used to characterize still images [1]
Colour descriptors Texture descriptors Shape descriptors

Colour Layout Texture Browsing Region-based Shape
Colour Structure Homogeneous Texture Contour-based Shape
Dominant Colour Edge Histogram
Scalable Colour

the standard itself [ref www.chiariglione.org/mpeg/]. Test conditions and criteria to assess 
those descriptors were well defined. In the case of visual descriptors, tests were oriented to 
evaluate retrieval performance. It has motivated complementary studies to analyse aspects 
such as data quality of the extracted descriptions (Eidenberger [131][132]) or computational 
complexity (Ojala et al. [133][134]). Stanchev et al. [135] also evaluated the effectiveness of 
MPEG-7 image features on specific image data sets.

3.2 Feature Space

Proposed feature space is built using a number of selected histogram-based MPEG-7 colour 
and texture descriptors [130]. Treating such histograms as feature vectors

x = [x1, x2, . . . , xp]
T , (3.1)

where xi ∈ <; 1 ≤ i ≤ p, they can be organized into a feature space

X = {x1,x2, . . . ,xNX
} , (3.2)

considering contributions of each descriptor element regarding to its semantics and ca-

pabilities to represent the image content. It is worth stressing that the problem of feature

selection is fundamental to pattern recognition [22].

There is a vast array of methods including such prominent approaches as principal compo-

nent analysis (PCA), independent component analysis (ICA) and alike [136] commonly used 
to select features and reduce dimensionality of feature space. A drawback of those methods 
in working with MPEG-7 descriptors is that they do not relate directly the original topology 
and consequently the interpretation of transformed features becomes less intuitive.

It is proposed a feature vector structure that combines efficiently features extracted from

MPEG-7 colour and texture descriptors. The structure keeps the original topology to preserve

syntax and embedded semantics on these descriptors. It selects descriptor elements avoiding

not only description overriding but also controlling vector dimensionality.



3.2 Feature Space 26

3.2.1 Colour and Texture Descriptors

As aforementioned, the feature space used in this study is formed by making use of two

types of visual descriptors, namely colour and texture. Then, image content is captured by

combining information extracted from local and global distributions (histogram) of colour,

edges and texture. For the sake of completeness, next sections include the components of the

entire feature vector structure along with a brief description of their syntax and semantics.

Colour Layout Descriptor (CLD)

This descriptor captures the spatial distribution of colour. It applies the discrete cosine trans-

form (DCT) to representative colours in an 8× 8 grid and encodes the resulting coefficients.

A picture is divided into 64 (8× 8) blocks and their average colours are derived. The colour

space adopted for CLD is YCrCb. Fig. 3.2 shows a sample of CLD in XML format.

<Descriptor xsi:type="ColorLayoutType">
<YDCCoeff>6</YDCCoeff>
<CbDCCoeff>3</CbDCCoeff>
<CrDCCoeff>3</CbDCCoeff>
<YACCoeff6>24 18 31 21 16 15</YACCoeff6>
<CbACCoeff3>32 31 14</CbACCoeff3>
<CrACCoeff3>18 15 15</CrACCoeff3>

</Descriptor>

Fig. 3.2: Sample of colour layout description in XML format

Colour Structure Descriptor (CSD)

This descriptor scans an image using a sliding window approach to capture localized colour

distributions. Area of the window is defined by an n × n-pel structuring block, which by

default uses n = 8. A 1× 1-pixel window reduces description to a standard colour histogram.

The histogram summarizes the number of times colours are reported as occurring within

the window. A colour map in the Hue-Min-Max-Diff (HMMD) colour space defined by MPEG

and a non-uniform quantisation determines the maximum number of bins.

Fig. 3.3(a) presents the mapping from RGB to HMMD space. The Hue channel has the

same meaning as in the HSV space. If Max == Min Hue is undefined (achromatic colour);

otherwise it is computed as indicated in Fig. 3.3(b).

Fig. 3.4 shows a sample of CSD in XML format.

Scalable Colour Descriptor (SCD)

This descriptor uses HSV colour space and uniform quantisation to 256 bins (16 levels in H,

4 in S, and 4 in V). In order to lower the 1024 bit/histogram representation, histograms are
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Max = max(R, G, B)
Min = min(R, G, B)
Diff = Max - Min

(a) Min-Max-Diff

if (Max == R && G > B) Hue = 60*(G-B)/Diff
else if (Max == R && G < B) Hue = 360 + 60*(G-B)/Diff
else if (G == Max) Hue = 60*(2.0 + (B-R)/Diff)
else Hue = 60*(4.0 + (R-G)/Diff)

(b) Hue

Fig. 3.3: Computing HMMD space from RGB values

<Descriptor xsi:type="ColorStructureType" colorQuant="4">
<Values>0 0 0 0 0 0 0 0 33 40 1 21 0 0 0 0 0 2 0 0 0 0 0 0 61 88

85 60 2 1 5 80 78 41 54 19 32 17 1 92 100 72 61 16 8 6
42 143 122 58 46 94 100 58 10 124 137 112 75 41 48 39 18

</Values>
</Descriptor>

Fig. 3.4: Sample of colour structure description in XML format

encoded using a Haar Transform. The resulting scaling can be 256, 128, 64, 32, or 16. Fig. 3.5

shows a sample of SCD in XML format.

<Descriptor xsi:type="ScalableColorType" NumberOfCoefficients="64"
NumberOfBitplanesDiscarded="3">

<Coefficients>9 0 6 0 -2 0 -2 0 1 2 -3 -1 -4 0 -1 1 0 0 0 1
-1 0 0 0 -1 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

</Coefficients>
</Descriptor>

Fig. 3.5: Sample of scalable colour description in XML format

Edge Histogram Descriptor (EHD)

Firstly, the image is spatially decomposed into 16 sub-images using a fixed grid with equal-size

rectangles. Then, five masks are used to assign an edge category to a number of sub-blocks

in which the sub-images are divided. It is an aggregation of sixteen 5-bin histograms, which

captures the spatial distribution of directional edges within each sub-image. The defined

types of edges are: horizontal, vertical, 45◦, 135◦, and non-directional edges. Fig. 3.6 shows a

sample of EHD in XML format.
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<Descriptor xsi:type="EdgeHistogramType">
<BinCounts>0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

2 6 2 2 1 3 5 3 5 2 3 5 3 4 3 3 5 4 4 4
5 3 4 5 4 5 2 4 4 1 6 1 4 5 2 4 3 5 5 3
2 5 3 2 5 2 3 3 4 4 0 3 2 2 2 0 3 2 1 2

</BinCounts>
</Descriptor>

Fig. 3.6: Sample of edge histogram description in XML format

Homogeneous Texture Descriptor (HTD)

This descriptor extracts values from a frequency layout to give a quantitative characterization

of the image texture in terms of directionality, coarseness (granularity), and regularity of

patterns. It uses a bank of scale and orientation sensitive filters to estimate the energy and

the energy deviation. Filters are applied on individual feature channels. Feature channels

are filtered applying 2-D-Gabor functions, which are modulated Gaussians. Fig. 3.7 shows a

sample of HTD in XML format.

<Descriptor xsi:type="HomogeneousTextureType">
<Average>184</Average>
<StandardDeviation>102</StandardDeviation>
<Energy>224 220 205 167 209 226 196 168 172 160

170 162 172 148 130 164 139 147 142 114
105 136 121 106 139 91 85 112 95 87

</Energy>
<EnergyDeviation>223 224 206 161 212 229 186 164

172 157 163 153 164 142 113 152 128 141
138 95 99 119 115 101 142 78 67 106 71 76

</EnergyDeviation>
</Descriptor>

Fig. 3.7: Sample of homogeneous texture description in XML format

3.2.2 Selection of Descriptor Elements

Selection of descriptor elements becomes an important issue in defining the structure of feature

vectors. Tab. 3.2 shows the different configurations of colour and textures components in the

feature space. Configuration settings providing the best balance are indicated at the third

column. Balance between descriptor elements is computed by

balance(dcolour,dtexture) = arg min( abs ( ‖dcolour‖ − ‖dtexture‖ ) ) (3.3)

where ‖dcolour‖ and ‖dtexture‖ are the number of constutient elements used by colour and

texture descriptors, respectively.
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Tab. 3.2: Setting feature vector dimension according to different configurations of colour and texture com-
ponents in the feature space

Descriptor Number of elements Settings
CLD 12 12
CSD 32 64 120 184 64
SCD 16 32 64 128 256 64
EHD 80 80
HTD 32 62 62

‖dcolour‖ = 140, ‖dtexture‖ = 142,

Balance 2
Feature vector dimension 282

As indicated in column Settings, CLD is set up to the default recommended that includes 
six Y coefficients and three each of Cr and Cb coefficients [130]. CSD is adjusted to 64 ele-
ments, which are calculated based on approximations computed using the 184-bin descriptor. 
SCD is fixed to 64 by scaling the quantised representation of Haar coefficients to obtain the 
desired number of bits. EHD uses its default corresponding to 80 elements. HTD uses the full 
layer, it is to say 62 elements.

The 140-element colour and 142-element texture components produce a difference of two

elements, which is an acceptable balance. Consequently, the full-size feature vector consists

of 282 descriptor elements. Fig. 3.8 shows the improvement on classification accuracy when

using combined description elements as feature vectors.

Fig. 3.8: Comparison of classification accuracy between separated and combined descriptor elements. De-
scriptors used to build the feature space are along the X axis (CLD=colour layout, CSD=colour structure,
SC=scalable colour, EHD=edge histogram, HTD=homogeneous texture, and CTD=colour and texture). CTD
aggregates colour and texture descriptors. Accuracy of the classifier is indicated at the Y axis. The number
of descriptor elements is indicated above each bar
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3.3 Empirical Evaluation of Feature Vector Quality

Image features work with different levels of effectiveness depending on the characteristics of

the specific image data set. Quality of the proposed feature vector structure is empirically

evaluated using the data collection described in Sect. 5.2.3. Briefly, analysis is conveyed

using 1,000 colour images of different sizes that were grouped into five classes namely animal,

building, city view, landscape, and vegetation. A picture was manually categorized by a single

subject into a certain class if the camera is focused in an object satisfying the name of the

class.

3.3.1 Univariate Analysis

It is worth to get an insight of the underlying structure of data before moving into analysing

inter-class separability. The learning space is divided into 5 sub-spaces, each formed with

elements from specific visual descriptors. Statistical moments (mean and standard deviation)

are used to describe the distribution of the image within each class. They provide information

on the location and dispersion of feature values (univariate analysis). In addition, contour

plots are used to facilitate identification of feature values concentrated within certain intervals.

Vertical and horizontal axes in the contour plot correspond to the independent variables.

X axis indicates the index of the descriptor element associated to the feature values. On the

other hand, y axis has been divided into ten intervals to identify the approximate value of

the iso-responses (contour lines). High frequency of data points within certain intervals can

be observed when iso-responses look like “fingerprints”. Distinguishing features report their

frequent data points at different locations along the y axis.

Fig. 3.9 to Fig. 3.13 show contour plots (left column) and mean values and standard

deviations (right column) of colour and texture descriptors. Co-ordinate of each descriptor

element are placed along the x axis. Contours indicate frequency of feature values in the

corresponding intervals (y axis). Original feature values were transformed linearly using min-

max normalization.

In general, there is a high concentration of values around certain intervals in all compo-

nents. It could derive onto overlapping of classes and low differentiation between features

among them. On the other hand, high variability reduces discrimination capabilities at fea-

ture level. A salient feature is not a strong representative of its class when there is a high

variability intra-class. Overlapping and weak salient features have undesirable effects on clas-

sification outcomes. However, it is not convenient to anticipate low classification rates without

performing an inter-class analysis. Therefore, next section is focused on that issue.
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Fig. 3.9: Colour layout component. It is not observed in the contour plot (left column) a high concentration
of values around a specific interval, save co-ordinates 8, 9, and 11. The mean values and standard deviations
(right column) present high variability (e.g. co-ordinates 4, 6, and 9). Only few features report low variability
(see co-ordinates 7, 10)
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Fig. 3.10: Colour structure component. It is observed in the contour plot (left column) a high concentration
of values around several intervals. The mean values and standard deviations (right column) present high
variability save very few features (see co-ordinates 3, 6, 15, 20)
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Fig. 3.11: Scalable colour component. Similarly to CSD, the contour plot (left column) shows a high
concentration of values around several intervals. The mean values and standard deviations (right column)
also present high variability. Only few features report low variability (see co-ordinates 24, 54, 62)

3.3.2 Inter-Class Analysis

A nonparametric Wilcoxon rank-sum test is applied to analyse inter-class separability of the

learning space using the proposed feature vector structure. It is an alternative to the two-
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Fig. 3.12: Edge histogram component. The contour plot (left column) reports a high concentration of values
around several intervals. The mean values and standard deviations (right column) present high variability
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Fig. 3.13: Homogeneous texture component. It is observed in the contour plot (left column) a high con-
centration of values around some intervals. The mean values and standard deviations (right column) present
high variability save few features (see co-ordinates 11, 13, 14, 15, 18, 41, 43, 45)

sample t-test. Some of the advantages of the Wilcoxon test are (1) validity even for data 
from any distribution, whether Normal or not, and (2) much less sensitivity to outliers than 
the two-sample t-test (Wild and Seber [137]). These properties of the Wilcoxon test are 
suitable to deal with MPEG-7 visual descriptors (eg. Homogeneous Texture is characterized 
by a Rayleigh distribution). A detailed description of the Wilcoxon rank-sum test is presented 
in App. A.

The aim of proposed feature vector structure is to retain the topology of the original

descriptor elements and consequently their embedded semantics. It facilitates evaluation of

features individually. The Wilcoxon test is used as filter method to quantify discrimination

capabilities of feature vectors using different dimensions. Individual feature selection is carried

out applying statistical hypothesis testing.

Performing the test for all individual co-ordinates (k = 1, 2, . . . , p) it ends up with the

set of salient features that can be seen as a family of retained indexes identifying position of

elements in the image descriptions for which the null hypothesis is rejected. As is illustrated

in Fig. 3.14, the following shorthand notation is used to describe these indexes:
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Icolor = ICLD | ICSD | ISCD (3.4)

Itexture = IEHD | IHTD . (3.5)

Original vectors

colour︷ ︸︸ ︷
1, 2, . . .

texture︷ ︸︸ ︷
. . . , p− 2, p− 1, p

Feature selection ↓ ↓
Retained indexes Icolour Itexture

Fig. 3.14: Retained indexes are identified through statistical hypothesis testing of differences between means
of the feature vectors ascribed to each concept. A retained index is a point in an array of co-ordinates that
indicates the position of a salient feature. Retained indexes are useful as a filter method

The feature vector structure could be written down as

x = [xcolour|xtexture]
T (3.6)

to emphasize that it is a concatenation of the features concerning colour and texture.

Schematically, this process of feature selection derives onto a reduction of the original learning

space as is portrayed in Fig. 3.15.

Original
Learning Space

Individual Feature
Selection

Reduced
Learning Space

Feature Indexes

Fig. 3.15: Feature selection is carried out on features individually. Retained indexes are used to filter out
non-salient features

If the P–value is equal to or less than a given critical value tα (confidence level), the null

hypothesis can be rejected. As shown in Fig. 3.16, the confidence level (α) impacts the feature

selection and consequently the level of achieved feature reduction.

Obviously, as it is well known in statistical analysis, there are only few typical α values

of such confidence levels; those being the most commonly used are 0.01, 0.05, and 0.1. Nev-

ertheless in the evaluation some other values are also worth experimenting with so that one

could gain a better insight into the selection abilities provided in this manner.

Semantic separability concerns a two-class problem, ω and not(ω), so as a matter of fact

the feature selection focuses on conceptual analysis, it is to say discrimination between the

occurrence or not of a concept. Furthermore, any multi-class classifier can be represented as

a family of two-class classifiers.

Then, detection of salient features is carried out using two groups of observations. Each

group with samples of feature vectors extracted from two sets of images. One set contains
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(a) Index 137: Non-Salient (b) Index 193: [Non-]Salient (c) Index 142: Salient

Fig. 3.16: These selected examples from the colour histogram component show the effects of confidence level
on feature selection. (a) Index 137 is always reported as non-salient feature; (b) Index 193 is reported as
non-salient feature for α = 0.01 and 0.05, but as salient feature for α = 0.1 and 0.2; (c) Index 142 is always
reported as salient feature

images ascribed to certain concept –class ω. The other set consists of images that are not

related to the concept –class not(ω).

In this manner the design considers subsets of features that are discriminative for a specific

pair of concepts. Counting how many times a given feature is recognized as being discrimi-

native helps assess its suitability to distinguish features belonging to different classes.

Differences are predominant positive (or negative) if the alternative hypothesis, H1, is

true. Definitely, the features for which the null hypothesis has never been rejected for each

class can be regarded as meaningless. The remaining ones are selected as salient features.

The number of salient features determines the percentage of retained indexes required

to differentiate one class from another. Fig. 3.17 quantifies the effect of feature selection

occurring for each category (concept) when varying the values of the confidence levels (values

of α).

Fig. 3.17: Quantification of salient features expressed as percentage of retained indexes after varying the α
value. The labels above the curves indicate percentage of features satisfying the alternative hypothesis
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Tab. 3.3 shows the details of this measure of retained indexes for the α value set up to 0.2.

This specific confidence level has been chosen experimentally. It represents a low probability

(1-0.2)=0.8, that is, 80% confidence level. This α is used as an upper bound.

Tab. 3.3: Percentage of retained descriptor elements for different classes of images and MPEG-7 visual
descriptors

Number of elements
α = 0.20 Icolour Itexture Icolour|Itexture % Retained elements

Original space 140 142 282 N/A
Animal 71 113 184 65.25
Building 76 111 187 66.31
City View 76 130 206 73.05
Landscape 80 120 200 70.92
Vegetation 96 124 220 78.01
Average 79.8 119.6 199.4 70.71

Fig. 3.18 depicts retained indexes formulated for the learning space at different confidence

levels. Scanning the indexes by concept (horizontal direction) several non-salient features can

be found. In contrast, a vertical scanning shows that practically every co-ordinate in the

family of indexes contains features that satisfied the alternative hypothesis in at least one

case.

(a) α = 0.01 (b) α = 0.05

(c) α = 0.10 (d) α = 0.20

Fig. 3.18: Retained indexes at different confidence levels (values of α). Horizontal axis corresponds to vector
co-ordinates (282 features). Vertical axis indicates the category. Many of the co-ordinates, in the family of
indexes, satisfied the alternative hypothesis
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Knowing that it will be possible to partition the feature space into semantic classes, the

next question is regarding to the dimensionality of the feature vectors. A first attempt could be

using the retained indexes. However, experimental studies showed that there is not significant

difference in the classification outcomes for reasonable percentages of training images (around

30%). Fig. 3.19 summarises selected results to illustrate this issue.

Fig. 3.19: Accuracies obtained in the multi-class problem using the original learning space is very close to
the ones obtained using salient features at different confidence levels

Classification produced using salient features is quite close to the one obtained when

dealing with the original feature vectors. Therefore, it is suggested to use the original vector,

since the accuracy will be similar with a lower computational cost, i.e. avoiding the filtering

module.

It was mentioned above the idea of avoiding transformations to preserve the semantic

embedded on each feature element. However, a compulsory step is to analyse whether or

not principal components could contribute to improve the partition of the feature space and

subsequently the classifier performance. Following section presents considerations and results

of principal component analysis with regard to the proposed feature vector structure.

3.3.3 Principal Components Analysis

The purpose of principal components analysis is to reduce the complexity of the multivariate

data into the principal components space and then choose the first q principal components

(q < p) that explain most of the variation in the original variables. The following criteria for

selecting the number of principal components are suggested in the literature:

• Scree plot. Important components are separated from the less important ones using

the Scree plot as visual reference. This plot portrays the eigenvalues λj against j (j =

1, 2, . . . , p),. This criterion includes principal components with eigenvalues before the

“elbow”.
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• Component exclusion. For the principal components calculated from the correlation

matrix, the average eigenvalue is 1. This criterion excludes principal components with

eigenvalues less than 1 (below the average).

• Cumulative fraction. This criterion includes components that explain some arbitrary

amount (typically 80%) of the variance.

Fig. 3.20 and Fig. 3.21 display the Scree plots of colour and texture components used to

built the feature space. The x axis contains the principal components sorted by decreasing

fraction of total variance. The y axis contains the fraction of total variance. Normalized values

of principal components are placed along the lower line. The small plot inside magnifies the

area around the “elbow” and indicates the variance accumulated at that component. The

cumulative fraction of total variance explained is also shown in the upper line. It is indicated

when the cumulative fraction is 90% or greater in order to identify the corresponding principal

component at that point.
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Fig. 3.20: Scree plots of colour components used to built the feature space

After combining the criteria to select the most convenient number of principal compo-

nents, the Karhunen-Loeve transform is applied on the learning space. The resulting space is

clustered to compare the outcomes using the original vectors and the re-defined ones. Results

are summarized in Fig. 3.22.
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Fig. 3.21: Scree plots of texture components used to built the feature space

Fig. 3.22: Comparison of space partition using either principal components or original vectors. Descrip-
tors used to build the feature space are along the X axis (CLD=colour layout, CSD=colour structure,
SCD=scalable colour, EHD=edge histogram, HTD=homogeneous texture, and CTD=colour and texture).
CTD aggregates the descriptors as indicated in Sect. 3.2.2. Feature vector sizes are indicated above each bar

As can be observed, partitioning of the feature space using the transformed vectors is not

improved. Original vectors produce a more accurate partition in terms of expected semantic

grouping. Because the framework incorporates clustering mechanisms, these results show that

it is not convenient to use principal components prior to clustering. Similar conclusions have

been found in another empirical studies, though in a different context (Yeung and Ruzzo

[138]).

3.4 Summary

A feature vector structure for building an MPEG-7 learning space was proposed. It combines

visual descriptors keeping discriminative elements and the semantics embedded in the original

descriptions. Structure settings provide a suitable balance between components. Results of

univariate, inter-class, and principal component analyses suggest the usage of full size vectors

to accomplish a better partition of the feature space.



Chapter 4

User-Driven Fuzzy Clustering

Clustering methods are commonly used to identify natural groups of unlabelled data [139]. As 
classification method, clusters are associated with a set of known classes to induce a model that 
categorizes oncoming data.

Applying conventional clustering methods, feature vectors are either assigned to or not 
assigned to a defined group. Fuzzy clustering, which applies the concept of fuzzy sets (ref [140]

[141]), assigns to each feature vector a membership degree, ranging between 0 and 1, to each 
cluster.

As mentioned by [142], three problems are found in clustering algorithms: (1) determining 
the optimal number of clusters to partition the data space, (2) the clusters do not match the 
expected groups, and (3) the cluster populations are equalized.

Since the number of classes in conceptual analysis of image content can be predetermined, 
the optimal number of clusters to partition the data space can be computed in function of the 
class set cardinality. Subsequently, validity functions (cf. [143][144]) such as the fuzziness 
performance index [145] or the compactness and separation [146][147] can be used. Further-

more, it can be assumed that a human interpreter has classified a small set of images per class 
in the database.

The second problem can be tackled using the exemplars (labelled data) to guide the 
clustering algorithm towards a desired partition of the descriptor space [118]. However, 
the nature of the problem demands an extension to deal with the subjectivity and 
fuzziness of the human interpretation [148].

Shape and size regularization methods have been proposed (cf. [149]) to handle the third 
problem, which occurs in response of the tendency presented in c-means clustering algorithms 
when grouping data within (hyper-) spherical or (hyper-) ellipsoid spaces based on the similar-

ity to the cluster prototypes. Besides, Pedrycz and Waletzky [119] indicates that the objective 
function being selected in advance predefines the shapes that want to be found in the data 
set.

The rest of this chapter is organized as follows: Sect. 4.1 introduces fuzzy clustering and its
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usage as pre-classification step of image content. Sect. 4.2 describes a structural data analysis

used to determine proximity and overlapping between classes, which leads to misclassification

problems. Sect. 4.3 gives details on a proposed partially supervised clustering algorithm.

Sect. 4.4 summarizes the chapter.

4.1 Unsupervised Fuzzy Partition of the Feature Space

Clustering methods help to organize low-level features into groups which interpretation may 
relate to some classification or description task pertaining to the image content. Thus, feature 
vectors are clustered according to similarities among them [150]. Such a similarity between 
vectors is quantified or measured using a proximity metric.

Fuzzy clustering applies a partitioning-optimisation technique based on minimization of 
an objective function that measures the desirability of partitions [151].

The criterion function is a scalar index that indicates the quality of the partition and has

the form

J(X,V,U) =

NX∑
i=1

c∑
j=1

um
ij d

2(xi,vj) , (4.1)

where X is a data space consisting of NX p-dimension feature vectors to cluster, V is a

set of c (2 ≤ c ≤ NX) cluster prototypes – centers, and U is a matrix belonging to the set of

all possible fuzzy partitions defined by

= =

{
U ∈ <NXc| ∀

1≤i≤NX
1≤j≤c

uij ∈ [0, 1] ,
c∑

j=1

uij = 1, 0 <

NX∑
i=1

uij < NX

}
, (4.2)

where uij is the degree of membership of vector xi in the cluster j, vj is the p-dimension

prototype of the cluster, d2(·) is any distance norm expressing the similarity between any

feature vector and the prototype, and m (1 < m < ∞) is a fuzzification exponent which

determines the degree of overlap of fuzzy clusters.

Fig. 4.1 presents clustering results after applying fuzzy c-means onto a two-class classi-

fication problem using colour descriptions. In this case feature similarity is used to ascribe

images to a common semantic class.

If clusters are manually labelled as a representative of a class with an identifying string,

e.g. “City view”, then the problem may appear to have been finessed. However, the adequacy

of such a solution depends on human interaction, which is completely subjective.

As described in Sect. 1.1.2, it is intuitive that two objects can be similar in their visual

primitives but semantically different to a human observer. This is a drawback to classify

images using only low-level vision and the foundation of the critical paradigm of “bridging

the semantic gap” [14].



4.1 Unsupervised Fuzzy Partition of the Feature Space 41

(a) Features vectors ranked by membership degree in the cluster

(b) Images used to extract the low-level vectors

Fig. 4.1: Sample of clustering results resembling semantic grouping (e.g. Outdoor or City view)

Alternatively, if clusters are described by an equivalence class

[vj]E
.
= {xi : xi ∈ X, E(vj) = 1} , (4.3)

where the cluster prototype vj is used to determine those feature vectors xi that are part

of the cluster. Then, the set of equivalence classes

X/E
.
= {[vj]E} (4.4)

called a quotient set forms a partition of the feature space. The clustering outcome can

be used as a classification function based on the map from X onto X/E is defined by

φ : X 7→ X/E . (4.5)

Information provided by this pre-classification step along with hints given by an expert

user regarding to the problem domain knowledge are quite useful to design the semantic

classifier and subsequently improve its accuracy.
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4.2 Structural Data Analysis

As the image classifier is designed on the space formed with low-level visual primitives, it

is worth to take another look at images by running cluster analysis and visualizing the re-

lationships between the clusters and classes as well as linkages formed between the clusters

themselves.

Using a Gustafson Kessel-Type of matrix, this analysis provides an interesting insight as

to the geometry and complexity of classes, homogeneity of clusters and proximity between the

classes. Anticipating the possible complex geometry of individual classes, usually the number

of cluster is kept higher than the number of categories of images.

It is very likely that the cluster is not completely homogeneous and could comprise also

some other patterns coming from remaining classes.

The first and second classes with higher percentage of patterns within the cluster are

marked as dominant classes. Accepting the notation in which a size of dots corresponds to

the percentage of the dominant class forming the cluster and a thickness of line originating

from the cluster characterizes its linkages with other classes, it can succinctly portray the

essential relationships between clusters, classes, and their geometry.

As illustrated in Fig. 4.2, clusters can be predominantly associated with a class with

practically no linkages (associations) with other classes (e.g. c1 : ω3). Others are very much

a mixture of classes with very limited dominance of the most frequent class (c2 : ω1, ω2, ω3).

There is a weaker linkage between classes ω1 and ω3 than the one presented by classes ω2 and

ω3.

Fig. 4.2: Graphical visualization of clusters (c1, c2, c3) and related classes (ω1, ω2, ω3) along with the “clas-
sification” content of the clusters

Fig. 4.3 presents cluster-class relationships after applying fuzzy c-means onto a multi-class

classification problem. The feature space is grouped into five semantic classes namely animal,

building, city view, landscape, and vegetation. The entries correspond to percentage of feature

vectors from each class assigned to the cluster. Within the plot percentage are represented

by the bubbles’ size.
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Fig. 4.3: Cluster-class dependencies (5×10). Connecting lines indicate class linkages. E.g. semantic relations
between animal-vegetation (cluster 1) and building-city view (cluster 10) are stronger than animal-city view
(cluster 6)

Occurrence of several dominant classes contributes to higher values of the confusion rate

coming with the specific cluster. Furthermore, ranking the frequent class pairs, presenting

higher levels of association, helps to determine classes in which their abstractions are leading

to misclassification. Tab. 4.1 summarizes this observation on a basis of the cluster-class

dependencies.

Tab. 4.1: Ranking of frequent class pairs presenting higher levels of association leading to misclassification
Rank Pair of classes
1 Vegetation - Animal
2 Building - City view
3 Vegetation - Landscape
4 Landscape - City view
5 Building - Animal

Looking at these class pairs, vegetation-animal presents the highest confusion. This se-

mantic overlapping can be observed at feature and perceptual levels. One sample of the latter

is given in Fig. 4.4 in which an animal image satisfies also criteria of vegetation.

Fig. 4.4: Semantic overlapping: image categorized as animal with strong content of vegetation
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4.3 Partially Supervised Clustering for Semantic Clas-

sification

Semantic classification of image content combines low and high-level numerical interpretations

of visual content. The built-in knowledge of descriptions enables systems to perform more

accurate partition of the feature space.

Applying standard clustering algorithms, the criterion function presented in Eq. 4.1 pro-

duces normally a partition of the feature space that is significatively different from the ex-

pected semantic groups. It can be denoted as

U � GΩ , (4.6)

where Ω corresponds to the set of classes and GΩ is the expected partition.

As aforementioned, it is possible to guide the clustering algorithm towards a desire parti-

tioning of the feature space such that

U(0) ª . . . ª U(t) ª U(t+1) ∼ GΩ . (4.7)

On the follow, a partially supervised clustering algorithm is proposed to satisfy Eq. 4.7.

The training data set is denoted by

X =



x1

1, . . . x1
n1︸ ︷︷ ︸

labelled 1

. . .xc
1, . . . ,x

c
nc︸ ︷︷ ︸

labelled c

xu
1 , . . . ,x

u
nu︸ ︷︷ ︸

unlabelled



 = Xd ∪Xu , (4.8)

where superscripts 1, . . . , c indicate the class label for design data and u for unlabelled

data. It leads to a partition matrix with the form

U︸︷︷︸
NX×c

=


 Ud︸︷︷︸

c×Nd

Uu︸︷︷︸
c×Nu




T

. (4.9)

Information concerning design data can also be provided using additional structures 
[119]. A binary vector to indicate whether the data is or is not labelled.

b = [bi] , i = 1, 2, . . . , NX

bi =

{
1, xi ∈ Xd

0, xi ∈ Xu
(4.10)

and a matrix containing degrees of memberships for the known data

F = [fij] , i = 1, 2, . . . , NX ; j = 1, 2, . . . , c . (4.11)
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The partially supervised method, based on [142][119], defines the objective function as 
follows

JΩ(X,V,U) =

NX∑
i=1

c∑
j=1

(1− bi + βfijbi)
mum

ij d
2(xi,vj) , (4.12)

where the binary vector b and matrix F are defined by Eq. 4.10 and Eq. 4.11, respectively. 
β (β ≤ 0) denotes a scaling factor to keep a balance between the supervised and unsupervised 
components within the minimization-optimisation mechanism [119]. As studied in [118], the 
fuzzification exponent m is set up to 2. The value of β is suggested to be proportional to the 
rate NX/Nd where Nd indicates the number of labelled data.

The necessary conditions for minimization of Eq. 4.12 can be obtained using the Lagrange

multipliers technique with the constraints established at Eq. 4.2.

The distance matrix is calculated as

d2
ij

.
= ‖xi − vj‖2

A = (xi − vj)
TAj(xi − vj) , (4.13)

where Aj is the identity matrix for Euclidean distance and inverse of fuzzy 
variance-covariance matrix for Mahalanobis distance [119]. The latter is computed as 
follows

A−1
j =

[
1

ρjdet(Pj)

] 1
n

Pj , (4.14)

where typically ρj = 1, j = 1, . . . , c, and

Pj =

∑N
i=1 u2

ij(xi − vj)(xi − vj)
T

∑N
i=1 u2

ij

. (4.15)

Cluster prototypes are defined by

vj =

∑N
i=1(1− bi + βfijbi)

2u2
ijxi∑N

i=1(1− bi + βfijbi)2u2
ij

(4.16)

and the membership degrees are computed by

uij =





fij, bi = 1[∑c
k=1

(
dij

dik

)2
]−1

, bi = 0
. (4.17)

The complete algorithm is summarized in Tab. 4.2

Fig. 4.5 depicts a two-class synthetic data set presented by [142]. It illustrates clustering 
results applying the unsupervised (standard fuzzy c-means, on the left) and partially super-

vised (proposed partially supervised fuzzy c-means, on the right) algorithms presented above. 
The contours at the bottom of each surface serve to visualise the partitions of feature space.



4.3 Partially Supervised Clustering for Semantic Classification 46

Tab. 4.2: Partially supervised clustering algorithm
Given X = Xd ∪Xu, data space containing labelled and unlabelled data

NX = Nd + Nu, number of feature vectors
c, number of clusters
b, indicator vector
F, known membership matrix
δ, criterion used in the Picard Iteration
ε, maximum number of epochs (optional stop condition)

Step 1 Initialise the partition matrix randomly, U(0) including F
Step 2 Calculate cluster prototypes using Eq. 4.16
Step 3 Compute the distance matrix applying Eq. 4.13
Step 4 Update the partition matrix using Eq. 4.17
Step 5 Compare U(t+1) to U(t). If ‖U(t+1) −U(t)‖ < δ or t > ε then STOP

Otherwise return to step 2 with U(t) = U(t+1)

Few labelled data guide the algorithm towards the right partitions.

Fig. 4.5: Space partition, membership degrees, cluster prototypes, and shapes obtained by unsupervised
clustering (left) do not match the expected solution as does its counterpart the partially supervised algorithm
(right) using few labelled data

Is it noticeable that accordingly to the problems indicated by [142] unsupervised clustering 
fails in trying to present the expected groups. On the other hand, proposed algorithm not only 
matches the expected groups but also provides the algorithm with an appropriate objective 
function to cluster the populations. It is worth to stress that supervision was limited to few 
datapoints.

Fig. 4.6 summarises structural data analysis of unsupervised and partially supervised

clustering applied on another data set. Providing the algorithm with a low percentage a
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labelled images, the level of matching between clusters and classes is increased in a 30%. All

dominant classes within the clusters became stronger, except by cluster “4”, after introducing

labelled images. Consequently, cluster-class dependencies are refined and class overlapping is

reduced.

(a) Unsupervised feature space partition (b) Partially supervised feature space partition

Fig. 4.6: Structural data analysis based on cluster-class dependencies (5 × 5). Values next to the bubbles
indicate percentage of patterns within the cluster. Expected partition is improved from 49% to 64.3% by
labeling 17% of training data

4.4 Summary

Information obtained through clustering algorithms (prototypes, space partition) and analysis

(cluster-class dependencies, ranking of overlapped categories) provides a better insight of the

image abstractions, refine the classifier design, and improve classification performance. More

specific “user-driven” information is incorporated by labelled data.

Ranking of dominant classes along with information given by class pairs and the strength

of their linkage is useful to perform either individual feature selection or feature weighting in

order to minimize the average within-cluster dispersion and maximizes the average between-

cluster dispersion.

Clustering outcomes can be used to learn support vectors and subsequently define an

optimal decision hyperplane to classify new patterns. Alternatively, cluster prototypes can

be used in the design of a radial basis function type of classifier. Thus, partially supervised

clustering equipped with an objective function establishes a solid base to build a more accurate

semantic categorization.

Chapter 6 describes a framework that integrates the proposed partially supervised algo-

rithm to an approach for concept-related indexing of image content. Clustering is used to

partition the MPEG-7 learning space presented in Chapter 3.



Chapter 5

A Framework for Concept-related

Indexing of Image Content

Phase One: Preceding Case Studies

Knowledge representation is one of the fundamental issues to carry out conceptual analysis

of image content. This analysis is conveyed vertically and horizontally. Vertically, because

it goes from low-level features to high-level concepts. Horizontally, because some results can

be only achieved with a multi-modal model. Knowledge is acquired from both visual content

and human interpreters.

Conceptual analysis of image content involves a semantic component, which casts the

process into the supervised – or learning -from-examples paradigm. Knowledge is acquired

by generalizing specific facts presented in a number of design samples (or training patterns).

Knowledge acquisition is carried out by a learning unit. Analysis of new images is performed

by an indexing unit that links low-level features to high-level concepts.

Two supervised approaches are studied prior to the framework design. The first approach

is described in Sect. 5.1. It uses fuzzy inference rules to represent connections between granules

of information at different levels of abstraction. The second approach presented in Sect. 5.2

corresponds to a radial basis function network (RBFN) that uses fuzzy-based receptive fields

to map image abstractions to visual interpretations. Sect. 5.3 summarizes the chapter.

5.1 Case Study I: Fuzzy Inference Approach

The nature of the relationships that can be established between image abstractions and con-

cepts involves uncertainty, roughly connections, and subjectivity. This characterization moves

the problem into the ground of fuzzy sets theory and fuzzy systems.

One of the advantages of fuzzy-based approaches is that they are closer to human reasoning

modes, than their counterparts, i.e. bivalued-logic-based approaches. The main drawback is
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less accuracy. However, as mentioned by Kuncheva [152], “practice has shown so far that 
trying to reach the accuracy of a good non-fuzzy model by a fuzzy one is likely to require more 
time and resources for building up the initial non-fuzzy classifier. Usually the resulting fuzzy 
model is not transparent enough for the end user to verify and appreciate.”

The classification problem defined by Eq. 2.1 on page 11 can be re-written as follows:

f : X 7→ L , (5.1)

where L = {`1, `2, . . . , `nL
} is a controlled lexicon consisting of nL symbols representing

image concepts (e.g. indoor, outdoor) and X is a feature space.

In the proposed fuzzy inference approach, the classifier employs if-then rules along with

an inference mechanism. A transaction ti,j is defined by an instance of the fuzzy classifier

f(xi) = `j. Transactions are used to capture problem domain, which combines information

provided by the machine and the human interpreter.

Implementation of learning and indexing units is presented in the following sections.

5.1.1 Learning Unit

Image abstractions are extracted automatically from still images, organized in feature vectors

and then associated with fuzzy variables. Each variable consists of fuzzy sets, which are the

inputs of the fuzzy reasoning model.

On the other hand, the learner is provided with a set of training samples tagged with a list

of labels from L. Besides labels are numerical values expressing relevance of the corresponding

concept with regard to each exemplar. It could be simplified assuming that the list of labels

is ordered by their relevance.

The list of labels and their relevance regarding to the image content are organized either

as fuzzy sets or as crisp sets (singletons). These sets are the outputs of the fuzzy reasoning

model.

Fuzzy sets are used to map image abstractions from real domain (<) to fuzzy domain

([0, 1]). Once mapped, an image is represented by a collection of membership values (degrees

of truth) to each fuzzy set. A function-theoretic form estimates the membership value (see

App. C).

A membership function, denoted by µ eA(xi) ∈ [0, 1], represents a possibility distribution.

The set of rules in the fuzzy reasoning model are generated applying a data mining tech-

nique on set of transactions (see App. B). Then, transactions consist of fuzzy set-concept

pairs as follows:

ti,j : (µ(xi), `j) , (5.2)

where µ(xi) is a list of fuzzy values obtained from xi using the membership functions
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associated to concept `j.

The result of the data mining process is a set of frequent fuzzy sets-concept pairs found in

the transactions set, which in turn determines association rules between image abstractions

and concepts.

The outcome of data mining process consists of a collection of rules of the form: “IF

antecedent THEN consequent”. Non-interesting rules for the inference system are filtered out

to select the most suitable rules.

Fuzzy sets, concepts, and inference rules are the components of the knowledge represen-

tation provided by the framework under this approach. The complete learning procedure is

summarized in Tab. 5.1.

Tab. 5.1: Learning procedure used in the fuzzy inference approach
1 learning ( sample images[ ], concepts[ ] )
2 {
3 read settings
4 for each image in sample images[ ] do
5 abstractions[ ] = extract features( image )
6 generate fuzzy sets
7 for each concept in concepts[ ] do
8 {
9 for each value in abstractions[ ] do
10 {
11 fuzzification( value )
12 write transaction
13 }
14 mine association rules( transactions set )
15 find inference rules( )
16 write rule
17 }
18 return rule base
19 }

5.1.2 Indexing Unit

Once the knowledge representation has been established, semantic profiles for new images can

be automatically created. This is a task for the indexing unit. An overview is depicted in

Fig. 5.1.

Image abstractions are extracted and mapped into a fuzzy domain. Then, the fuzzy

reasoning model is applied to infer the concepts that could be used to create the semantic

image profile.

The fuzzy reasoning model is implemented by an inference system that involves three

basic modules: fuzzification, fuzzy inference, and defuzzification. A detailed description of

the inference system is presented in App. C.
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Image
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T-norm T-conorm

IF antecedents THEN consequents

Fig. 5.1: An overview of the indexing unit under the fuzzy inference approach.

The outcome of the indexing unit is a list of concepts along with their degree of possibility

to represent the image content. The list corresponds to the semantic image profile.

The complete indexing procedure is summarized in Tab. 5.2.

Tab. 5.2: Indexing procedure used in the fuzzy inference approach
1 indexing ( image, rules[ ] )
2 {
3 abstractions[ ] = extract features( image )
4 for each value in abstractions[ ] do
5 fuzzification( value )
6 inference( )
7 defuzzification( )
8 return semantic profile
9 }

5.1.3 Test Conditions

Data set used to evaluate this case study consists of over 3,000 distinct images extracted from 
TRECVID video repository (Smeaton et al. [153]). A single subject assigned the ground-

truth for all images. Images were manually grouped into two categories namely building and 
non-building. Some samples of building images are shown in Fig. 5.2.

The TREC Video Retrieval Evaluation (TRECVID) benchmark provides an infrastruc-

ture for large-scale testing of retrieval technology. The TRECVID data set is comprised of

approximately 170 hours of broadcast news video data from CNN Headline News, ABC World

News Tonight and CSPAN. Currently, TRECVID addresses the problem of detection to 20

semantic concepts. For the task at hand, the following specification is given:

• Building exterior segment contains video of the exterior of a building.
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Fig. 5.2: Samples of building images extracted from TRECVID videos

5.1.4 Evaluation

The technical reference of this evaluation is summarised as follows:

Tab. 5.3: Summary of test conditions for case study I
Semantic profile : Single-element instance (only one index)
Lexicon : Building, Non-building
Approach : Fuzzy inference
Data set : TRECVID; 3,000 images
Feature vector : 80-element Edge histogram descriptor

The fuzzy inference approach is used to index images belonging to categories building and

non-building. The MPEG-7 edge histogram descriptor (See Sect. 3.2.1 on page 27) is used

to represent the low-level image content. Fig. 5.3 highlights two samples of building images.

In the first one, it is presented a close-up picture at which relevance of the building object

is evident. The latter shows an open picture with different objects that not only introduce

noise in the feature representation but also add more options to the content interpretation,

i.e. street, cars.

A major aspect of edge histogram descriptor is its simplicity to represent local and global

distribution of edges without expensive computation. It uses luminance mean values to detect

edges, which is considered a weak approach. However, weakness of low-level description is

compensated with contributions of problem domain knowledge.

According to semantics of edge histogram descriptor, five input variables are defined for

the fuzzy model. Each input variable corresponds to an edge type category.

A compact fuzzy model is proposed associating a group of fuzzy sets with each input

variable. Three fuzzy sets are used by default to simplify the model. Linguistic hedges are
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(a) (b) (c)

(d) (e) (f)

Fig. 5.3: (a) Close-up building image, (d) Open building image (b)-(e) Image decomposed into 16 sub-images,
(c)-(f) Non-overlapping small square blocks

not applied on this model. Z-, Λ-, and S-shape functions are used to determine membership

degrees (See App. C). Tab. 5.4 presents a summary of the fuzzy variables with their fuzzy

sets and boundaries.

Tab. 5.4: Settings of fuzzy variables used to represent the edge histogram descriptor. Each fuzzy set namely
Low, Medium, and High is defined by a membership function. These function have a domain between the
interval determined by the corresponding boundaries b1, b2, b3

Universe Fuzzy set b1 b2 b3

Vertical Edge,
Horizontal Edge, Low 0.1 0.3 1.0
Diagonal 45◦, Medium 0.1 0.3 0.4
Diagonal 135◦, High 0.0 0.3 0.4
Non-directional

The inference rules are organized into a multi-input single-output (MISO) rule space as is

shown in Fig. 5.4. Each inference rule has an IF-part with five antecedents and a THEN-part

with one consequent as follows:

IF ev
1 is Ak

1 . . . AND ev
5 is Ak

5 THEN yj , (5.3)

where ev
i is an instance of an input variable (edge type), Ak

i is a linguistic term (fuzzy set

name) used to transform values from a continuous to a discrete domain, and `j is a symbol

labelling a semantic category. The lexicon consists of symbols building and non-building.

A sample of inference rules generated by the rule mining process is given in Tab. 5.5.

Selected feature values extracted from the sub-images depicted in Fig. 5.5 and their corre-

sponding fuzzy values are presented in Tab. 5.6. The possibility in this table indicates the

score assigned by the system regarding to accuracy of the results. Both results achieved 1.0
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Fig. 5.4: Fuzzy variables associated with each type of edge are combined into a multi-input single-output
space. Rj is an IF-THEN rule as is shown in Eq. 5.3. Fuzzy set names L, M, H stand for Low, Medium, and
High

meaning that the system considers that these sub-images represent positively a building.

(a) Sub-image 3-3 (Row 3, Col 3) Fig. 5.3(a)

(b) Sub-image 2-1 (Row 2, Col 1) Fig. 5.3(d)

Fig. 5.5: Selected sub-images referenced in Tab. 5.6

Three different settings were evaluated:

• A first run (test 1) was performed to evaluate inference results on image descriptions

limited to local analysis. As edge histogram descriptor decomposes original image into

16 sub-images, local analysis means classification of each single sub-image. This kind

of analysis allows detection of parts of a building structure within the scene. Accuracy

of inference is over 70%.

• A second run (test 2) was addressed to global analysis. It requires a minimum number of

sub-images ascribed to the concept “building” before considering that the entire image

contains a building.
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Tab. 5.5: Example of weighted rules. V, H, D1, D2, ND, L, M, H, NB, and B stand for Vertical, Horizontal,
Diagonal 45◦, Diagonal 135◦, Non Directional, Low, Medium, High, Non Building, and Building, respectively.

weight IF THEN
0.5 V is L H is L D1 is L D2 is L ND is L NB
0.5 V is M H is L D1 is L D2 is L ND is M NB
1.0 V is L H is M D1 is L D2 is L ND is L NB
0.5 V is L H is L D1 is L D2 is L ND is M NB
1.0 V is L H is M D1 is L D2 is L ND is H NB
1.0 V is L H is L D1 is L D2 is M ND is H B
1.0 V is L H is L D1 is L D2 is L ND is H B
1.0 V is H H is L D1 is L D2 is L ND is M B
1.0 V is M H is M D1 is L D2 is L ND is L B
1.0 V is H H is L D1 is L D2 is L ND is L B

Tab. 5.6: Feature and fuzzy values for the selected sub-images from pictures depicted at Fig. 5.3(a) and
Fig. 5.3(d). Feature values (actual) appear below image IDs at 2nd and 6th column. Fuzzy values (membership
degrees) are arranged below each fuzzy set’s name. Two last rows indicated the expected (ground truth) and
predicted (fuzzy inference) results along with the possibility of each prediction

Universe 33569 Low Medium High 45936 Low Medium High
Vertical 0.530 0.000 0.000 1.000 0.358 0.000 0.419 0.580
Horizontal 0.069 1.000 0.000 0.000 0.125 0.870 0.129 0.000
Diagonal 45◦ 0.123 0.882 0.117 0.000 0.068 1.000 0.000 0.000
Diagonal 135◦ 0.089 1.000 0.000 0.000 0.067 1.000 0.000 0.000
Non-Directional 0.166 0.668 0.331 0.000 0.108 0.956 0.043 0.000
Ground Truth Building Possibility Building Possibility
Fuzzy Inference Building 1.000 Building 1.000

• A third run (test 3) was used to evaluate effects of varying the rule weights. These

weights are real values ranging between 0 and 1. Relevance of the rule is determined to

tune the knowledge representation of the problem domain.

Results are summarized in Tab. 5.7.

Tab. 5.7: Accuracy of inference process [ % ]
Test Accuracy
1 70.05
2 83.95
3 86.31

Increasing the number of descriptor elements introduces a undesirable complexity on the 
fuzzy model because of the required number of input variables. In such cases, it is suggested 
to use the radial basis function network approach. There are mechanisms to transform RBFN 
into a fuzzy inference system (Jin and Sendhoff [154]). However, those mechanisms are not 
evaluated in this research work.
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5.2 Case Study II: Radial Basis Function Network Ap-

proach

The semantic component indicates that some domain knowledge about the classification pro-

blem is available and can be used as part of the training procedures. The design of the

classifier is addressed as a family of two-class (binary) classifiers. A binary classifier returns

a Boolean variable indicating whether a given image belongs to class ω (Boolean 1) or is

excluded from it (Boolean 0).

5.2.1 Learning Unit

Image abstractions (feature vectors) are grouped by concept and used as design patterns of

each class. Classes are arranged on the schema one-against-all, it is to say, a concept will

represent class ω at certain point and the rest of them class not(ω).

A number of receptive fields is formed around mean values of those groups of feature

vectors by concept. In the sequel if a new feature vector is similar to the prototype the local

activator (receptive field) should return 1 or a value close to it. On the contrary, if the image

abstraction moves apart from the prototype, the activation level produces values close to zero.

There are numerous possibilities as to the choice of the receptive fields. Here, the receptive

fields are computed as

uij(xk) =

[
c∑

j=1

(
dik

djk

)
2

m−1

]−1

, (5.4)

where ui(xk) captures the matching level between the feature vector of new image xk (1 ≤
k ≤ NX) and the prototype of the i-th class (concept), m > 1 is a fuzzification exponent whose

role is to adjust the shape of the receptive field, and d2(·) is any distance norm expressing the

low-level similarity formally defined as

d2
ik

.
= ‖xk − vi‖2

A = (xk − vi)
TA(xk − vi) , (5.5)

where A is the identity matrix for Euclidean distance or inverse of variance-covariance

matrix for Mahalanobis distance and vi (1 ≤ i ≤ c) is the prototype. It suggest the neuron

model presented in Fig. 5.6.

As presented in Sect. 3.2.2, image abstractions consist of an aggregation of visual descrip-

tors. Contributions of each descriptor to classify images vary with the classes, e.g. colour

is suitable to characterize images belonging to the class animal. Then, weights are assigned

to each component of the feature vector using a radial basis function network (RBFN) that

captures information provided by professional annotators when define training patterns for

the classes. The hidden layer with RBF activation functions
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Image Abstraction Receptive Field

u  (x)1

 x1 
 x2 
 ... 
 xn 

Descriptors

 Multiplexer 

Fig. 5.6: Hidden neuron model. The output depends on the distance of the image abstraction (input vector)
from the prototype. The multiplexer implements the support of multiple descriptors because the receptive
fields are descriptor-dependent

u1, u2, . . . , uND
, (5.6)

where ND indicates the number of descriptors, is aggregated in an output layer with linear

activation function

y = w1u1 + w2u2 + . . . + wND
uND

, (5.7)

where wj(0 ≤ j ≤ ND) are the weights assigned to determine the relevance of the descriptor

regarding to the class ω. The learning procedure for all the training patterns at the same

time can be written in matrix form as




u1(x1) . . . uND
(x1)

...
. . .

...

u1(xk) . . . uND
(xk)


 [w1 . . . wND

]T =




y1

...

yk


 (5.8)

Defining the activation matrix by

Φ =




u1(x1) . . . uND
(x1)

...
. . .

...

u1(xk) . . . uND
(xk)


 (5.9)

Eq. 5.8 can be re-written as

Φ




w1

...

wND


 =




y1

...

yk


 (5.10)

Thus, the optimisation of the linear mapping is realized in a supervised mode by means

of the standard pseudo-inverse method. The weights are computed by

[w1, w2, . . . , wND
]T = Φ‡ [y1, . . . , yk]

T (5.11)
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The complete learning procedure is summarized in Tab. 5.8.

Tab. 5.8: Learning procedure used in the RBFN approach
1 learning ( sample images[ ], concepts[ ], descriptors [ ] )
2 {
3 abstractions[ ] = extract features( sample images[ ] )
4 groups[ ] = group ( abstractions[ ], concepts[ ] )
5 for each group in groups[ ] do
6 {
7 mean[ ] = mean( )
8 stdev[ ] = standard deviation( )
9 for each descriptor in descriptors[ ] do
10 {
11 compute receptive fields( group, descriptor )
12 define activation matrix
13 weights[ ] = pseudo-inverse matrix( )
14 }
15 }
16 return RBFN model
17 }

5.2.2 Indexing Unit

The aggregation procedure of multiple descriptors is possible because the topology of the

original descriptor elements is kept in the feature vectors (See Fig. 5.6 and Sect. 3.2.2).

RBFN architecture acts as an inference engine using the neuron model. In this way,

semantic profiles are created by attaching class labels to visual abstractions.

The multi-class classification relies on results obtained through the collection of two-class

classifiers as is illustrated schematically in Fig. 5.7. The outcome of multi-class classifiers is

combined into a single set of concepts or semantic profile.

The complete indexing procedure is depicted in Fig. 5.8 and summarized in Tab. 5.9.

Tab. 5.9: Indexing procedure used in the RBFN approach
1 indexing ( image[ ], RBFN model )
2 {
3 abstractions[ ] = extract features( image )
4 for each concept in rbfn model do
5 {
6 get activation levels
7 remove concepts ( threshold )
8 }
9 return semantic profile
10 }
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Fig. 5.7: RBFN and linear activation levels. Binary classifiers are aggregated to create the semantic profile
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Fig. 5.8: An overview of the indexing unit under the RBFN approach.

5.2.3 Test Conditions

Experimental material used to evaluated this case study consists of 1,000 colour images of dif-

ferent size collected from Corel stock gallery (ref [corel.com]) and download from the Web (ref

[freefoto.com]). Images were manually grouped into five categories namely animal, building,

city view, landscape, and vegetation.

To underline the diversity of the graphic material, Fig. 5.9 includes some sample images

used in the experimental studies. It becomes noticeable that while the categories under

discussion seem to be quite distinct, in virtue of the very nature of visual information, it

is very likely that some images could be correctly ascribed to semantic profiles containing

simultaneously several categories, say an animal being a part of some landscape.

The subjective criterion to assign an image to certain category is the match between the

object on which the camera is primarily focused and the category name. It is assumed that

this criterion helps to determine the relevant object in the scene. Then, relevance is decided
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5.9: Sample images used in the study; (a) Animal, (b) Building, (c) City view, (d) Landscape, (e)
Vegetation; note that combinations of several categories occurring in the same image are considered; this
becomes evident in case of images shown in (f) and (g)

looking at region occupied by the object and its spatial location, i.e. centred and in the

foreground. It is also supposed that these characteristics obey an interest of the photographer

of capturing such an element in the scene. The following criteria was used to assign images

into categories:

• Animal, a scene falls into this category when an animal of a visible size appears in

the picture. One shortcoming in this type of images is the mimetic properties of some

species.

• Building, a scene is tagged with this concept when a building structure of a visible

size appears in the picture. Two shortcomings are identified: the different types of

buildings, i.e. castles, residential houses, warehouses, religious facilities, etc.; and the

different distances used in the close-ups.

• City view, a scene containing panoramic views of cities, specifically buildings, is assigned

to this category. The different angles and small size of the man-made structures, among

others, are examples of shortcomings to categorize these scenes.

• Landscape, a scene is placed in this category when the picture depicts scenery with

natural elements such as mountains, forest, seashores, etc. No man-made objects are
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expected to be in this type of images.

• Vegetation, a scene belongs to this category when nature, i.e. plants, appears in the

picture.

5.2.4 Evaluation

The technical reference of this evaluation is summarised as follows:

Tab. 5.10: Summary of test conditions for case study II
Semantic profile : Single-element instance (only one index)
Lexicon : Animal, Building, City View, Landscape, Vegetation
Approach : Radial basis function network
Data set : Corel Stock and FreeFoto; 1,000 images
Feature vector : 282-element Colour and texture descriptor

The RBFN approach is used to index images belonging to the five categories described

above. 282-element feature vectors are used to represent the low-level image content (See

Sect. 3.2.2 on page 28).

The fuzzification factor (exponent) used in the development of the receptive fields (See

Eq. 5.4 on page 56) requires some attention. A suite of experiments was completed to quantify

the effect of its value on the performance of the RBFN classifier. Fig. 5.10 shows that changes

in the values of the fuzzification factor (m) produce a little impact on the performance.
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Fig. 5.10: Effects of the fuzzification factor on the RBFN classifier performance

Practically, to avoid unnecessary and quite tedious optimisation (as it cannot be completed

with the use of gradient-based techniques), it is advisable to fix the value of the coefficient as

2.0. This value is the one typically used in most applications of the FCM clustering algorithm

[141].
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Given the multi-class problem, the performance achieved for the training and testing data

sets on the MPEG-7 learning space are shown in Fig. 5.11 along with the details collected in

a tabular fashion at Tab. 5.11. Accuracies obtained with concatenated descriptions are higher

in all cases.

Fig. 5.11: Performance obtained when using an RBFN approach with either separated or concatenated
descriptor elements as feature vectors

Tab. 5.11: Confusion matrix when using an RBFN approach with concatenated descriptor elements as
feature vectors

Training (%) Testing (%)
Category A B C L V A B C L V
(A) Animal 59.17 1.67 8.33 0.00 17.50 41.25 2.50 6.25 0.00 11.25
(B) Building 5.00 78.33 14.17 0.00 1.67 15.00 75.00 12.50 0.00 1.25
(C) City View 8.33 5.00 51.67 2.50 0.83 8.75 8.75 50.00 2.50 0.00
(L) Landscape 4.17 11.67 24.17 92.50 1.67 10.00 12.50 25.00 95.00 5.00
(V) Vegetation 23.33 3.33 1.67 5.00 78.33 25.00 1.25 6.25 2.50 82.50
Accuracy 72.00 68.75

The confusion matrices deliver a detailed quantification of the distribution of the classi-

fication error. These matrices confirm the expected semantic conflicts in separating certain

categories (See Sect. 4.2 on page 42). In particular, the categories come in the following pairs:

animal-vegetation, building-city view, and city view-building/landscape. Overlapping between

groups is solved choosing the highest level of matching as categorization outcome. This final

stage step in the RBFN approach is presented in Fig. 5.12.

Differences between RBFN performance for the two-class and multi-class problems are

presented in Fig. 5.13. The two-class problem reports acceptable results, i.e. above 82%. In

contrast, performance in the multi-class problem is reduced dramatically to a range between

60% and 75%.

While the results reported so far are primarily concerned with the quantitative aspects of

the approaches, it is equally important to discuss its qualitative facet. In particular, it is of
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Fig. 5.12: Final stage in the RBFN approach to solve the overlapping between categories

Fig. 5.13: Performance of the RBFN approach for the two- and multi-class problems

interest to learn what images are tagged with a wrong semantic profile, why, and what could

help improve the procedures.

The following remarks are derived of observations obtained from outcomes of approaches

presented above and corresponding images as the ones presented in Fig. 5.14 and 5.15. As

can be observed, images do not appear in ascending nor descending order. It is because the

classifier does establishes a ranking with the images. The score is obtained from the binary

classifier that obtained the higher outcome.

Animal images are correctly categorized when there is a clear contrast between the back-

ground and the foreground. Otherwise, the salient features for these images are poorly dis-

criminated and the semantic profiles are mainly instantiated as vegetation.
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The prediction of building images becomes satisfactory with feature vectors containing

strong texture orientation. One shortcoming in the manual labelling was the differentiation

between city view and building based on the close-up. Some of these building images were

placed into the city view group.

Fig. 5.14: Samples of semantic profiles correctly assigned. Classification score is indicated below each image

The texture and colour descriptors allow certain discrimination between landscape and city

view images. However, there are images that even to the human observer are semantically

similar.

The same drawback happens when looking at the group of images containing concepts

landscape and vegetation. The close-up criterion was a certain shortcoming with other groups.

For instance, most of the images belonging to group vegetation with objects filling almost the

whole area of the picture were wrongly categorized.

5.3 Summary

Two classification approaches have been evaluated according to availability of training images

and data size, namely fuzzy inference and radial basis function network-type of classifier.



5.3 Summary 65

Fig. 5.15: Samples of semantic profiles wrongly assigned. Classification score and assigned concept are
indicated below each image

There is a suitable groundwork to apply the fuzzy inference approach when the number

of variables is low and the availability of exemplars is high (above 30% of the current data).

Otherwise, as presented in the case study I, it becomes too computational expensive and less

effective to build the classifier.

On the other hand, known classes and availability of exemplars for each of them, establishes

a convenient groundwork for RBFN-type classifiers. However, a shortcoming appears when

there is high variability intra-class. It could be overcome by defining specialised receptive

fields that serve as activation function of certain groups of images within the same class. It

derives in deeper levels of granularity, i.e. adding more neurons or layers, and relates the issue

of partitioning the feature space.

Considering these limitations along with full supervised learning mode in which the above

approaches operate, a partially supervised clustering approach is introduced to the framework.

Details on the design of the framework are presented in the following chapter.



Chapter 6

A Framework for Concept-related

Indexing of Image Content

Phase Two: Design and Evaluation

The proposed framework takes advantage of fuzzy sets theory (Klir and Folger [155]) to induce 
a classifier model for concept-related indexing of image content. The framework creates a built-

in knowledge base to store interpretations of the image content.

Sets of concept-related indexes (named semantic profiles) are proposed to connect image

abstractions to interpretations. Semantic profiles are inexact in nature similar to human

interpretations.

Each time new labelled images are added to the database, new concepts can emerge from

the constant evaluation of the semantic profiles, leading to continuously changing of knowledge

base. The updating task is carried out by a learning unit. Accordingly, new unlabelled images

activates an indexing unit in order to create a semantic profile for them.

A framework overview is given in Sect. 6.1. Afterwards, a fuzzy clustering approach used

to build the knowledge base and generate semantic profiles for new images is described. A

salient feature of this approach is its capability to approximate human-like reasoning. Sect. 6.2

is devoted to explain the semantic profiles. It also presents the proposed matching procedure

to perform comparison image-image, image-cluster, and cluster-cluster combining low- and

high-level information.

Second part of the chapter reports experimental studies carried out to evaluate perfor-

mance of the framework. Sect. 6.3.1 describes test conditions. Finally, Sect. 6.4 summarizes

the chapter.
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6.1 Framework Overview

The proposed framework automatically assigns concepts, from a pre-defined lexicon, to images

combining granules of information at different abstraction levels (ref to 2.1, Fig. 2.1). It

creates a semantic profile to describe the image content. Such a description appertains to the

machine interpretation of the low-level features, which relies on the experience accumulated

by the system. The framework maintains a built-in knowledge base to store interpretations

of the image content. The framework consists of two main units: learning and indexing.

6.1.1 Learning Unit

The learning unit consists of three sequential modules: feature extraction, knowledge repre-

sentation, and semantic profile generation. Fig. 6.1 illustrates the data flow of this unit.

The inputs are labelled and unlabelled training images and visual interpretations with

regard to the content of the labelled images. A professional annotator provides interpretations.

The feature extraction module generates compliant image abstractions with the MPEG-7

standard. Low- and high-level information is combined into a learning space.

Problem domain knowledge is introduced through a controlled lexicon, which contains the

concepts related to the image content. The knowledge representation module uses a partially
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Fig. 6.1: Overview of the learning unit. The first module extracts a set of low-level features in compliance
with the MPEG-7 syntax and builds a learning feature space. The second module relays on human knowledge
to produce suitable links between low-level features and high-level concepts on a limited training set. The
lexicon is used to control the signification space. The third module generates semantic cluster profiles
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supervised clustering algorithm to create a built-in knowledge base.

Clustering is also applied to generate a suitable partition of the feature space. Based

on the clustering outcomes summarised in a partition matrix, each cluster is labelled with a

number of concepts in order to create semantic cluster profiles. These profiles constitute the

outcome of the learning unit.

The complete learning procedure is summarized in Tab. 6.1. Some details are added to

previous description of the procedure:

Line 6, unsupervised clustering is used to create an initial partition of the learning space,

though there are available labelled images. The reason is to present the professional annotator

an insight of underlying relationships that could affect the desired semantic grouping.

Line 9, a preliminar semantic profiling is generated prior structural data analysis. Line

12-13 compute cluster-class dependencies and identify class pairs (overlapping) based on

labelled images.

Line 14 captures information from professional annotator to set up the partially super-

vised clustering algorithm (e.g. refined labels). Another important setting parameter is the

number of elements to be used in instantiating the profiles. It is to say, single- or multiple-

element instance. In case of the latter, it is suggested to indicate the expected number of

elements to refine the profiling. Line 17 relates the iterative component of the annotation

process.

Tab. 6.1: Learning procedure used in the clustering approach
1 learning ( sample images[ ], concepts[ ] )
2 {
3 read interpretations
4 for each image in sample images[ ] do
5 abstractions[ ] = extract features( image )
6 clusters[ ] = generate unsupervised learning space
7 for each cluster in clusters[ ] do
9 compute semantic profile ( clusters[ ], concepts[ ] )
10 for each concept in concepts[ ] do
11 {
12 compute cluster-class dependencies ( )
13 display structural data analysis ( )
14 settings = capture annotator’s feedback ( )
15 }
16 clusters[ ] = generate semi-supervised learning space
17 if refine space then go to Line 10
18 compute semantic profile ( clusters[ ], concepts[ ] )
19 return semantic cluster profiles
20 }
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6.1.2 Indexing Unit

The indexing unit automatically assigns concepts to new images using the knowledge acquired

by the learning unit. The feature extraction module extracts low-level features of unlabelled

images. Afterwards, the knowledge representation module maps image abstractions into the

corresponding domain, i.e. fuzzy domain. The semantic classification module relies on the

built-in knowledge base to generate the semantic profile for the image. Therefore, the indexing

unit consists of three sequential modules: feature extraction, knowledge representation, and

semantic classification. The knowledge representation module provides the classifier with a

lexicon to control the signification space. Fig. 6.2 portrays components and data flow of the

indexing unit.
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Fig. 6.2: Overview of the indexing unit. The first module extracts a set of low-level features in compliance
with the MPEG-7 syntax and builds a learning feature space. The second module provides the classifier with a
lexicon to control the signification space. It also guides the clustering algorithm towards a semantic grouping
of incoming images. The third module generates semantic image profiles

The inputs are unlabelled images. The feature extraction module generates compliant

image abstractions with the MPEG-7 standard. The knowledge representation module uses

information on learning space partition to find a group for the incoming image. Clustering-

based classification defines degrees of membership to each cluster and create the sematic

profile for the new image.

The complete learning procedure is summarized in Tab. 6.2.

Tab. 6.2: Indexing procedure used in the clustering approach
1 indexing ( image, cluster prototypes[ ] )
2 {
3 extract feature vector ( image )
4 for each prototype in clusters prototypes[ ] do
5 compute membership ( )
6 create semantic profile ( )
7 return semantic image profile
8 }
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6.2 Semantic Profiles

6.2.1 Concept Profiling

A semantic profile consists of one or more concept-related indexes. These profiles can be

defined by a single-element instance (one and only one index) or a multiple-element instance

(two or more indexes).

Initially, learning space is partitioned into clusters approximating semantic groups. Then,

occurrences of concepts attached to training images are summarized by cluster. A weight is

assigned to each concept considering the membership degrees of the images within the cluster.

In case of having multiple-element instances in the semantic images profiles, position of the

concept is also involved in computing the weight. In order to simplify this step, membership

degrees are divided by the concept’s position.

wjk =
∑

1≤i≤NX

µk(xi)

pos(`j,xi)
, (6.1)

where wjk is the weight of concept `j in cluster k, µ is the membership degree of feature

vector xi to cluster k, and pos(·) returns the position of a concept within the list of concepts

tagged to xi.

Subsequently, weights are normalized and concepts sorted in descending order by weight.

The preliminar profile of cluster k is as follows:

Lk =

{
`j | ∀

r<j
s>j

wrk ≤ wjk ≤ wsk

}
. (6.2)

In order to eliminate low-ranked concepts a threshold criterion (δ) is applied.

∀
`j∈Lk

wjk ≥ δ . (6.3)

Tab. 6.3 summarizes the semantic profiling procedure.

Tab. 6.3: Semantic profiling procedure
Given X = Xd ∪Xu, learning space that contains labelled and unlabelled data

N = Nd + Nu, number of feature vectors
L = {`1, `2, . . . , `NL

} is a lexicon
c, number of partitions
δ, threshold criterion

Step 1 Partition the learning space
Step 2 Rank images within each partition
Step 3 Compute concepts’ weights using Eq. 6.1
Step 4 Normalize weights and create cluster profile (Eq. 6.2 and Eq. 6.3)
Step 5 Return semantic cluster profiles Lk (1 ≤ k ≤ c)



6.2 Semantic Profiles 71

Tab. 6.4 presents a sample of semantic profiles obtained after applying clustering approach

onto a descriptor space that contains feature extracted from images that can be grouped into

five classes.

Note that concept landscape in cluster “3” occurs in the 22.3% of the images and its

relevance is high. Knowing, that number of images of each class is the same, it indicates that

most of the best-ranked images belong to that class.

In contrast, concept city view in cluster “0” occurs in almost same percentage of images

but its relevance is lower. It indicates that images ascribed to that class have low membership

degrees (ranking) within the cluster.

Profile of cluster “4” consists of concepts building and city view, which reports an overlap-

ping between this class pair. Membership degrees are low as indicator of either high intra-class

variability or low feature discrimination.

Tab. 6.4: Sample of cluster profile. Test conditions are: five classes and equal number of clusters, and
threshold criterion δ = 0.8. Percentage of ascribed images to the cluster is indicated. The number besides
each concept corresponds to its relevance within the cluster

ID % images Cluster Profile
0 21.9 city view (0.462)
1 15.1 animal (0.541)
2 20.0 vegetation (0.702)
3 22.3 landscape (0.729)
4 20.7 building (0.369),

city view (0.283)

Once the semantic profile is assigned to each cluster, the next step is to define a procedure

to estimate distances combining low- and high-level matching.

6.2.2 Proposed Matching Procedure for Performance Evaluation

As the framework embeds classification approaches, several interesting classification scenarios

may arise. Assuming ω as the true class or expected concept, the classifiers may produce the

following outcome

• Image is ascribed to only one class. There are two options: the class is the same as ω

–no classification error, the class is different –misclassification.

• Unknown image. The classifier does not identified a class (that is it has produced a

classification decision of not(ω)).

• Image is ascribed to several classes; say ωr, ωs, etc. (1 ≤ r, s ≤ c) This is described as

lack of specificity of classification. Under these circumstances, two situations may occur.

First, ω is within the set of these classes. The result is correct but not specific. Second,
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ω is not in these classes being identified by the classifiers. In this case the classification

result is neither correct nor specific.

However, the proposed concept-related indexing cannot be reduced to typical classifica-

tion outcomes, though it incorporates classification mechanisms. Furthermore, performance

evaluation of the index assignments relates the issue of semantic matching constraints.

Matching constraints take into account the fact that, firstly, the incoming image may

match multiple entries in the lexicon and, secondly, the matching that do occur may be

imperfect or incomplete.

In contrast to typical procedures used to determine performance of a classifier, the frame-

work requires estimation of matching (or mismatching) between the expected and assigned

semantic profiles.

Expected and assigned semantic profiles can differ not only in their content, but also in

their size (number of concepts). Bringing methods from text matching, two procedures were

evaluated:

• Changes-based matching. This procedure is based on the Levenshtein distance ([156]).

It counts the number of deletions and insertions require on the assigned profile to be

identical to the expected profile. Concept’s position is not considered by this procedure.

The level of matching is reported as the number of required changes divided by the

number of concepts on both profiles.

• Position-based matching. Search for the occurrence of the concept starting at first

position and considers the position of it within the list. As aforementioned, position is

assumed as indicator of relevance. It is to say; a concept at the first position is more

relevant for interpreting the image content than another close to the back of the list

(semantic profile).

In addition, exact matching is applied at concept level. It is to say, any prefix/suffix

variation or case sensitive change is assumed as mismatch. The procedures are illustrated in

the following example:

Given the expected profile {sky, water, building, park} and assigned profile {clouds, park,

tree, building, mountain}:

• Changes-based matching detected three deletions (clouds, tree, mountain) and two in-

sertions (sky and water). The final result is 5
(4+5)

= 0.56.

• Position-based matching penalizes not only the absence of concepts, but also the posi-

tion. The result is 0.68 meaning high mismatching (Tab. 6.5).
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Tab. 6.5: A sample of position-based matching procedure
1 2 3 4 5 Minimum

Profiles clouds park tree building mountain distance
1 sky 1.00 1.00 1.00 1.00 1.00 1.00
2 water 1.00 1.00 1.00 1.00 1.00 1.00
3 building 1.00 1.00 1.00 0.17 1.00 0.17
4 park 1.00 0.40 1.00 1.00 1.00 0.40
Min. distance 1.00 0.40 1.00 0.17 1.00 0.68

Experimental results demonstrated that proposed position-based procedure reports more

accurate levels of matching between expected and assigned profiles than the changes-based

matching procedure.

Incorporating low-level matching enhances position-based matching. The complete match-

ing procedure is presented in Tab. 6.6.

Tab. 6.6: Proposed matching procedure to compare semantic profiles
Given xi (1 ≤ i ≤ NX) a feature vector associated with the i-th image

vj (1 ≤ j ≤ c) a cluster prototype
L a lexicon
Li = {lr | lr ∈ L (1 ≤ r ≤ nr)} the semantic profile of xi

Lj = {ls | ls ∈ L (1 ≤ s ≤ ns)} the semantic profile of cluster cj

Step 1 Compute low-level matching using Eq. 6.4
Step 2 Compute high-level matching using Eq. 6.5

where dr,s is calculated applying Eq. 6.6
Step 3 Compute distance di,j using Eq. 6.7

d2
low(xi,vj)

.
= ‖xi − vj‖2

A (6.4)

dhigh(xi,vj) =

∑nr

r ( min
1≤s≤Ns

(dr,s)) +
∑ns

s ( min
1≤r≤Nr

(dr,s))

nr + ns

(6.5)

dr,s =





1 lr 6= ls





0 r = s

(r − s)/(nr + 1) r > s

(s− r)/(ns + 1) r < s

otherwise

(6.6)

dij = dlow ∗ dhigh (6.7)

The proposed matching procedure satisfies metric axioms:

• Level of matchings are non-negative.
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• Level of matching is zero only if the features and profiles are identical (including position

of concepts within the annotation list).

• Level of matching between two objects (i.e. cluster prototype or image) are symmetric.

Using the matching procedure as metric and adding it to the partitioned space, the result

is a metric space. Then, the framework is provided with a learning space that can be formally

summarised as

< X,V, L,L, d > , (6.8)

where X is a set of p dimensional feature vectors, V is a set of cluster prototypes, L is

a controlled lexicon, L is the subset of concepts used to create the semantic cluster profiles,

and d is the metric for computing low- and high-level matching.

6.3 Evaluation

6.3.1 Test Conditions

To carry out the assessment of the framework environment in a comprehensive and meaningful

manner, the test conditions has been carefully organized. In particular a number of design

scenarios that help to quantify some interesting combinations of the framework’s settings

have been included. Experimental data consisting in two data sets collected from large image

collections: Corel stock gallery, and Freefoto.com.

The training and testing data sets used were randomly generated. Percentage of training

samples is ranged from 10% to 30% of all images and the remaining is allocated for testing.

The first data set is described in Sect. 5.2.3. The second data set is enlarged by adding

more images from Corel stock gallery. In order to limited the context of the image annotations,

experiments were tailored to images containing the concept “building” or “buildings”. Over

3,000 were selected from the Corel categories listed in Tab. 6.7.

Tab. 6.7: Corel categories containing “building” images
Agriculture Nature
Architecture Plants
Art Religion
Cities and Regions Travel
Government Urban
Historic and Vintage

In contrast to the first data set, this one consists of around 750 concepts. Tab. 6.8 shows

some samples of concepts.
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Tab. 6.8: Samples of some concepts appearing in the third dataset
Apartment Auditorium Cityscape Downtown Entrance
Farms Gardens Hill Houses Inn
Jungle Korean Landmark Mall Mosque
Newspaper Ocean Pantheon Racks Railroad
Seashore Shop Table Tavern Temples
Tower Umbrella University Valley Vegetation
Walkway etc.

6.3.2 Hierarchical Clustering

Hierarchical clustering methods were evaluated to compare against the partitioning method 
applied in this study. Specifically, the clustering using representatives (CURE) algorithm 
proposed by Guha et al. [157] was used because its capabilities to deal with outliers and work 
on large-scale and multidimensional data sets.

CURE selects representative points for each cluster that are generated by selecting well

scattered points from the cluster and then shrinking them toward the center of the cluster

by a specified fraction. This enables CURE to adjust the geometry of clusters having non-

spherical shapes and wide variances in size. Using random sampling, CURE handles large

data sets efficiently.

A main drawback found when applying hierarchical clustering is the difficulty to obtain

a desirable partition. Fig. 6.3 illustrates this situation depicting a dendrogram in which

semantically meaningful groups are merged at different stages of the process. Merging is

represented by horizontal lines connecting to vertical lines. The numbers at the bottom are

used as image IDs.

Fig. 6.3: Dendrogram based on clustering outcome produced by CURE

Fig. 6.4 presents three highlighted groups appering in the dendrogram. These groups

consist to numbers 6, 8,. . . , 4; 23, 47,. . . , 21; and 37, 44, . . . , 33; respectively. If the partition

were taken when picture number 6 is added to the cluster containing animal images, the

cluster of city views will be negatively affected by adding images 29, 40,. . . ,11. In contrast,

the cluster of landscape images will get image number 35, which is landscape as well, being

affected positively. This illustrative case shows the drawback mentioned above.

CURE outperforms in certain data sets. However, it was not the case with the data sets

concerning to this study. The proposed clustering approach achieves more optimal grouping

in terms of semantic categorization.
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Fig. 6.4: Samples of images within selected clusters generated using CURE algorithm. Depicted clusters
are labelled as animal (1st row), city view (2nd row), and landscape (3rd row). They are represented in the
dendrogram by numbers 6, 8,. . . , 4; 23, 47,. . . , 21; and 37, 44, . . . , 33; respectively

6.3.3 Single-element instance

Tab. 6.9: Summary of test conditions used to evaluate the framework
Semantic profile : Single-element instance (only one index)
Lexicon : Animal, Building, City View, Landscape, Vegetation
Approach : Fuzzy clustering
Data set : Corel Stock and FreeFoto; 1,000 images
Feature vector : 282-element Colour and texture descriptor

Semantic profiles obtained when partitioning the feature space into 10, 15, and 20 clusters

in reported in Tab. 6.10, Tab. 6.10, and Tab. 6.10, respectively. At the bottom of tables,

reported levels of matching are computed applying Eq. 6.4, Eq. 6.5, and Eq. 6.6.

Tab. 6.10: Experiment si5-c10-t0.8, cluster profiles obtained with single-element instances and 5 concepts
(si5), 10 clusters (c10), and a threshold criterion δ = 0.8. Percentage of ascribed images to the cluster is
indicated. The number besides the concepts corresponds to their relevance within the cluster

ID % images Cluster profile ID % images Cluster profile
0 9.5 building (0.776) 6 10.0 vegetation (0.879)
1 10.0 animal (0.715) 7 12.2 landscape (0.848)
2 11.7 city view (0.766) 8 11.2 animal (0.544),
3 8.5 building (0.484), vegetation (0.251139)

animal (0.240225) 9 10.5 city view (0.363),
4 9.7 landscape (0.740) building (0.331053)
5 6.7 vegetation (0.872)

Low-level matching: 68.3
High-level matching: 80.0
Proposed matching: 78.8
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Tab. 6.11: Experiment si5-c15-t0.8, cluster profiles obtained with single-element instances and 5 concepts
(si5), 15 clusters (c15), and a threshold criterion δ = 0.8. Percentage of ascribed images to the cluster is
indicated. The number besides the concepts corresponds to their relevance within the cluster

ID % images Cluster profile ID % images Cluster profile
0 7.0 city view (0.817) 8 7.8 vegetation (0.901)
1 2.8 vegetation (0.964) 9 8.4 landscape (0.694)
2 5.6 landscape (0.467), 10 5.3 building (0.876)

city view (0.301484) 11 8.8 city view (0.349),
3 6.5 city view (0.635) building (0.32393)
4 8.1 animal (0.686) 12 3.3 vegetation (0.669)
5 6.7 vegetation (0.666) 13 5.8 building (0.912)
6 10.3 landscape (0.871) 14 8.2 animal (0.743)
7 5.4 animal (0.432),

city view (0.270503)
Low-level matching: 93.5
High-level matching: 73.7
Proposed matching: 72.5

Tab. 6.12: Experiment si5-c20-t0.8, cluster profiles obtained with single-element instances and 5 concepts
(si5), 20 clusters (c20), and a threshold criterion δ = 0.8. Percentage of ascribed images to the cluster is
indicated. The number besides the concepts corresponds to their relevance within the cluster

ID % images Cluster profile ID % images Cluster profile
0 5.7 city view (0.781) 9 1.8 vegetation (1.000)
1 3.9 landscape (0.433), 10 7.9 landscape (0.695)

city view (0.334668) 11 7.8 landscape (0.890)
2 6.5 animal (0.780) 12 1.1 vegetation (1.000)
3 4.7 animal (0.735) 13 7.3 landscape (0.652)
4 4.5 building (0.466), 14 3.6 vegetation (0.734)

city view (0.314465) 15 5.5 animal (0.690)
5 4.3 building (0.933) 16 4.4 building (0.464)
6 3.5 building (0.816) 17 6.3 vegetation (0.902)
7 3.6 building (0.896) 18 5.7 city view (0.784)
8 4.5 animal (0.407), 19 7.4 vegetation (0.814)

city view (0.291893)
Low-level matching: 94.0
High-level matching: 75.4
Proposed matching: 74.6

Levels of matching between expected and assigned profiles are above 70%, which represents

an improvement in comparison with unsupervised results that are about 45%. It means

an approximated increment of 55%. Results are alike to the ones obtained with the fully

supervised RBFN approach presented in the previous chapter, though with less than half

of the training images. Clustering outcomes are highly consistent with the perceptual and

semantic grouping as can be observed in the following figures.

Fig. 6.5 shows samples of best-ranked images in three clusters whose profiles lead to correct

classification and consequently resemble the expected semantic grouping.
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Fig. 6.5: Samples of clusters satisfying the expected profile. The cluster profiles are as follows: city view
(first row), animal (second row), and vegetation (third row). Membership degree is indicated below each
image

Fig. 6.6: Samples of misleading clusters. First row: animal (0.462); second row: vegetation (0.578); third
row: building (0.286), city view (0.286); fourth row: building (0.341), landscape (0.340); and fifth row: animal
(0.478), city view (0.320). Membership degrees appear below each image
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In contrast, Fig. 6.6 depicts samples of clusters leading to misclassification. Low member-

ship degrees reveal the high variability of feature vectors in relation to the cluster prototypes.

Consequently, re-training is highly recommended.

Fig. 6.7 shows clusters containing some images that introduce “noise” into the cluster

prototype, though the semantic profiles is refined using the threshold condition, in which

irrelevant concepts are discarded.

Fig. 6.7: Samples of clusters satisfying partially the expected profile. There is an animal image (first row,
4th picture) in a cluster ascribed to landscape. Two of the best-ranked images in a cluster of building images
contain scenes of city views (second row, 1st and 2nd pictures). Membership is indicated below each image

Fig. 6.8 shows some outlier images whose low-level features are dissimilar to the rest of the

images and consequently appear isolated in clusters with few elements (one or two vectors).

Fig. 6.8: Samples of outlier images

6.3.4 Multiple-element instance: Enlarging the Lexicon

A shortcoming found in the preceding case studies was their limited capability to deal with

images containing multiple annotations. They are highly constrained to single-element in-

stances.

In the following experimental results, the learner was presented with a list of concepts

tagging each image. In average four concepts annotate an image. The total number of

concepts is over 700. Influence of colour and texture component on clustering results was

evaluated. The technical reference of this evaluation is summarised in Tab. 6.13.
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Tab. 6.13: Summary of test conditions used to evaluate the framework
Semantic profile : Multiple-element instance (two or more indexes)
Lexicon : Over 700 concepts
Approach : Fuzzy clustering
Data set : Corel stock; 3,000 images
Feature vector : 282-element Colour and texture descriptor

List of clusters in Tab. 6.14 group images presenting high-level of colour matching. Strong

influence of colour can be observed in Fig. 6.9 showing some best-ranked images within these

clusters.

Tab. 6.14: Experiment mi700-c50-t0.4, cluster profiles obtained with multiple-element instances and over
700 concepts (mi700), 50 clusters (c50), and a threshold criterion δ = 0.4. Percentage of ascribed images to
the cluster is indicated. The number besides the concepts corresponds to their relevance within the cluster.
Images within these clusters present a high-level of matching in the colour component

ID % Images Cluster profile
4 0.27 building (0.156), road (0.117), path (0.117)
13 0.41 flowers (0.217), trees (0.123)
30 1.63 buildings (0.129), building (0.106), trees (0.102)
39 1.29 people (0.153), building (0.112), tree (0.079)

Fig. 6.9: Samples of clusters with strong influence of colour
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Cluster profile shows in Tab. 6.15 correspond to images with strong texture similarity. It

can be observed in the best-ranked images within this cluster depicted in Fig. 6.10.

Tab. 6.15: Experiment mi700-c50-t0.4. Percentage of ascribed images to the cluster is indicated. The
number besides the concepts corresponds to their relevance within the cluster. Images within this cluster
present strong texture similarity

ID % Images Cluster profile
25 2.38 building (0.152), buildings (0.074), people (0.054),

street (0.046), water (0.045)

Fig. 6.10: Samples of cluster containing images with strong texture similarity

As presented in Tab. 6.16, relevance of the concepts depends not only on the number of

images but also on the levels of matching with regard to the cluster prototype. The clusters

in this case contain few images, but because of the low membership degrees, concepts’ weights

are low as well. Fig. 6.11 shows the images assigned to these clusters.

Tab. 6.16: Experiment mi700-c50-t0.4. Concept’s relevance does not depend on the number of images, but
in the levels of matching

ID % Images Cluster profile
16 0.07 mill (0.480)
18 0.20 sky (0.211), gate (0.166)
27 0.14 facade (0.266)

Fig. 6.11: Samples of clusters with very few images

Samples of clusters containing images satisfying conceptual and perceptual similarity are

presented in Tab. 6.17 and Fig. 6.17. The order of image profiles has an effect on the high-level

matching.
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Tab. 6.17: Experiment mi700-c50-t0.4. Percentage of ascribed images to the cluster is indicated. The
number besides the concepts corresponds to their relevance within the cluster. Concept’s relevance depends
on the order of annotations

ID % Images Cluster profile
29 2.18 buildings (0.181), building (0.112), sky (0.090)
42 3.06 building (0.155), street (0.100), buildings (0.084)

Fig. 6.12: Samples of clusters containing images satisfying conceptual and perceptual similarity. The first
two images (1st row) are similar, however the order of their profiles has a negative effect on the semantic
cluster profile

Tab. 6.18: Experiment mi700-c50-t0.4. Cluster profiles containing images with high saturation and darkness
ID % Images Cluster profile
2 0.75 building (0.161), buildings (0.155)
21 2.52 buildings (0.147), building (0.104), sky (0.051),

street (0.049), elevators (0.034)
49 1.36 buildings (0.160), building (0.122), sky (0.072)

Tab. 6.18 and Fig. 6.13 show samples of how contribution of descriptor elements facilitates

separation of images in different clusters, though their commonalities in terms of saturation

and brightness.

Results in Tab. 6.19 and Fig. 6.14 correspond to a variety of images of costumes, paintings,

soldiers, people, etc. Beyond any low-level feature similarity, these images have a common

concept “building”.

Tab. 6.19: Experiment mi700-c50-t0.4. Cluster profiles containing a variety of images
ID % Images Cluster profile
6 1.84 building (0.124), buildings (0.068), lights (0.065),

palace (0.064), people (0.061)
24 3.26 building (0.146), people (0.132), buildings (0.066),

street (0.053)
28 3.67 building (0.109), trees (0.102), buildings (0.080),

water (0.049), village (0.043)
33 3.54 people (0.119), building (0.117), street (0.101)
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Fig. 6.13: Samples of clusters containing images with high saturation and darkness

Fig. 6.14: Samples of clusters with a variety of images
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6.4 Summary of Experimental Studies

Selected experimental results are listed in a tabular way in Tab. 6.20 to summarise considera-

tions with regard of proposed framework. Resubstitution and holdout methods were applied

in selecting training and testing sets.

Tab. 6.20: Run 1-11: multiple-element instance, run 12-24: single-element instance. Profile size indicates
the number of concepts in each profile. Low-, high-level, and proposed matching are computed using Eq. 6.4,
Eq. 6.5, and Eq. 6.6, respectively

Average Low-level High-level Proposed
Run Clusters Threshold profile size matching (%) matching (%) matching (%)
1 5 0.5 8.60 74.67 26.18 50.77
2 10 0.5 8.10 55.99 27.26 59.65
3 15 0.5 7.80 54.56 27.66 60.72
4 20 0.5 7.00 50.51 28.92 64.44
5 25 0.5 6.80 50.50 29.05 64.41
6 30 0.5 6.53 48.94 28.97 65.47
7 50 0.2 1.04 45.31 16.70 62.62
8 50 0.3 2.02 45.31 25.06 66.43
9 50 0.4 3.46 45.31 29.74 68.63
10 50 0.5 5.46 45.31 29.47 68.61
11 50 0.4 1.28 45.31 35.85 70.94
12 5 0.8 1.20 89.80 54.38 60.64
13 10 0.8 1.30 68.26 65.10 78.75
14 15 0.8 1.20 93.52 69.23 72.46
15 20 0.1 1.00 93.95 72.20 74.65
...

...
...

...
...

...
...

20 20 0.6 1.00 93.95 72.20 74.65
21 20 0.7 1.05 93.95 72.18 74.62
22 20 0.8 1.15 93.95 72.11 74.57
23 20 0.9 1.50 93.95 67.35 70.03
24 20 1.0 3.25 93.95 43.35 47.03

Run 1 to 6: Number of clusters have a direct effect on the quality of the partition. Looking

at the combined metric it is noticeable that it derives in better semantic grouping.

Run 7 to 10: The threshold criterion determines the number of concepts to be included in

the semantic profiles. It can be noted in the variation of profile size’s average, which modifies

the high-level matching and consequently the combined result presented at the last column.

Run 11: Replacing some concepts by their synonyms, hypernyms, or holonyms; simplifies

the lexicon and contributes to increase the high-level and combined matching.

Run 12-14: The effects of refined partitions is demonstrated with a constrained lexicon.

Run 15-24: The impact of threshold criterion is shown with a constrained lexicon.

The expected number of the concepts assigned to a certain profile is observed as a strong

factor that influences the quality of the annotation. It is also noted that simplifying the

lexicon increases the levels of matching.



Chapter 7

Conclusions and Discussion

Accuracy, timeliness, and ease of use are important components in determining end-user 
computing satisfaction (Doll and Gholamreza [158]). The first two refer to the quality of the 
responses independently of the complexity of the content and the efficiency of the system in 
terms of request/response delay.

Ease of use component is moving systems towards intelligent architectures that incorpo-

rate reasoning and learning capabilities. In this regard, image understanding is a frontrunner

within multimedia computing technologies in the use of images to interface people and sys-

tems.

One of the challenges in image understanding is the sensory data gap. It expresses the

difference between human perception and interpretation of multimedia content and the inter-

pretation derived from an automatic analysis of the machine.

Following conclusions and discussion stem from the research work leading to the proposed

framework for concept-related indexing of image content. Automated linguistic indexing

of images is becoming a critically important area of research because of its demonstrated

potential to narrow the semantic gap.

7.1 Conclusions

Visual interpretations of the image content provide lexical information that attached to image

abstractions expand classic conceptual image analysis. Lexical information is useful to intro-

duce problem domain knowledge. This sort of information can be incorporated through

exemplars or inference rules.

Inference rules are suitable to compensate the absence of available exemplars or guide

the learner to the correct prototype of a learnable concept. On the other hand, learning

from examples is convenient since it can combine labelled and unlabelled data under partially

supervised learning modes.

The nature of the relationships that can be established between image abstractions and
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concepts involves uncertainty, roughly connections, and subjectivity. This characterization

moves the problem into the ground of fuzzy sets theory and fuzzy systems.

An important component within the proposed framework is the mechanism when present-

ing the exemplars to the learner. After evaluating statistical and soft computing techniques, it

was found that partially supervised clustering is an appropriate method to reveal underlying

structures in low-level representations, to create prototypes representing learnable concepts,

and to partition the description space into groups that facilitates incremental learning.

This learning mode reduce the burden of collecting samples randomly as well as improves

the quality of the chosen ones taking into account low- and high-level similarity (or dissimi-

larity by learning from negative exemplars or misclassified patterns). The learning strategy

is also a practical way to introduce system’s adaptation and can be extended onto relevance

feedback.

Partitioning and hierarchical clustering algorithms were evaluated. Partially supervised

fuzzy clustering equipped with an objective function establishes a more solid base to build

a more accurate semantic categorization than its counterparts. Prior domain knowledge,

structural data analysis, and users’ feedback serve to overcome identified shortcomings in

partitioning clustering.

These shortcomings refer to determining the optimal number of clusters to partition the

data space, mismatching between clusters and semantic groups, and equalizing cluster popu-

lations.

A main drawback found in resembling semantic groups with clustering is the tendency

presented in fuzzy c-means algorithms when grouping data within (hyper-) spherical or ellip-

soid spaces based on the similarity to the cluster prototypes. An option is in adapting the

mean-based decision to proximity-based approaches.

Cluster compactness can be achieved by shrinking data towards the mean or medoid. It

improves the cohesiveness intra-cluster. Furthermore, cluster representatives can be used to

determine boundaries inter-clusters and define an optimal decision hyperplane to differentiate

them. These representatives are a kind of support vectors.

Information obtained through clustering algorithms (prototypes, space partition) and

analysis (cluster-class dependencies, ranking of overlapped categories) provides a better in-

sight of the image abstractions, refine the classifier design, and improve classification perfor-

mance.

A shortcoming found in semantic classification approaches is their limited capability to deal

with images containing multiple annotations. They are highly constrained to single-element

instances. It is to say, only one concept by image. When dealing with multiple-element

instances (two or more concepts by image) it is suggested to simplify the lexical information

by substituting some concepts by their holonyms. It becomes an important design step in the

construction of a robust semantic indexer. Compact lexical information reduces ambiguity in
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mapping images into many possible interpretations.

7.2 Discussion and Further Work

The power of new computational environments found in computer architectures and networks

provides a convenient platform to build more robust solutions for the current challenges in

multimedia computing.

Besides, computer vision, machine learning and pattern recognition methods contribute

in a significant way to the attempt of conciliating human and machine interpretations.

However, some questions arise regarding to the computational efficiency and generalization

capabilities of proposed recognisers. It attaches directly some of the components of end-user

computing satisfaction and turns out the attention towards learnable and non-learnable visual

concepts.

It has been pointed out that a learnable concept should be learned from a polynomial

number of examples and using polynomial bounded computational resources.

Examples can be chosen through random sampling of large-scale image databases, which

does not guarantee quality or good representation of the concept. For instance, there could

be substantial variations in the exemplars in the random sample. Another drawback is on the

definition of “good example” itself, which involves subjectivity.

This sort of search could imply the need to traverse the entire database deriving in ex-

pensive computational procedures. On top of that, availability of exemplars is a concern.

Consequently, selection of suitable examples becomes a critical design step of a pattern recog-

niser.

In this way, active learning and relevance feedback have been incorporated successfully

to strategies addressing the problem of learning concepts. Furthermore, partially supervised

learning approaches are taking advantage of unlabelled data.

Accepting these approximations to provide multimedia systems with learnable concepts,

it is required a procedure to determine how much knowledge a machine has accumulated with

regard to a concept (reckoning partial learning) and mechanisms to identify the exemplars

that contributed most to the learning achievements.

Another issue in treating a multimedia system, as an intelligent entity is the representation

of acquired knowledge used by the learning algorithm. Adhering to the MPEG-7 standard,

description schemes should be used to describe meta-information of learnable concepts.

It could contribute in the definition of a common “language” (lexical information) and

uniform models for representing image content. It would provide interoperability of image

descriptions as well as durable and stable lexicons that are a requirement to support sharing

and reusing metadata among users.

The recognition process has been oriented to broad classes such as city views, nature,
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etc. Each class is linked to an image concept. More specific classes may not be easily

distinguishable. Even though, progress in computational ontology opens the doors to more

elaborated representations of image content. Aforementioned description schemes can be

equipped with specific metadata structures linking linguistic indexes to ontology maps.

In summary, four issues presented in this section are: incremental concept learning, col-

lection and organization of exemplars, the usage of existing standard metadata structures,

i.e. MPEG-7 description schemes, to facilitate interoperability of knowledge representations,

and the growing need of research on computational ontologies to exploit capabilities of lexical

information. These issues could be considered in future studies such as:

• What can be learned from situations where different interpretations of data are possible,

i.e. the ambiguity of perception (Whaite and Ferrie [159]).

• Non-learnable visual concepts may become learnable if something is known (or assumed)

about the probability of the examples (Shvaytser [59]). It is required models to deal with 
non-learnable concepts in the sense of tracking them to find out the way these concepts 
may become learnable.

• Choosing good representatives of a class that accurately characterize it, is an intuitive

strategy when using exemplar-based methods. Studies as the one reported by Jacobs et 
al. [160] turn out the attention towards selection of atypical points that can be used to 
describe a class. For instance, Guha et al. [157] and Lam et al. [161] proposed strategies 
that attempts to select good prototypes and maintains a balance of different kinds of 
prototypes.

• It is required a common and mathematically sound framework for the problem of image

parsing, in which conceptualisation of visual patterns and their components (vocabu-

laries) can be expressed in a standard-like way. As reported by Zhu [162], it could lead 
to richer and more advanced classes of vision models.

These considerations seem to be appealing when an emerging standard is taking place.

The Still Image Search –JPSearch standard, destined to become ISO/IEC NP 24800, “aims

to specify additional metadata and related functionalities to support the implementation of

a flexible and efficient still image search.”
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Appendix A

The Wilcoxon Test

The aim of proposed feature vector structure is to retain the topology of the original descriptor

elements so that one could directly relate them to the original descriptor settings.

Considering a two-class problem, say ω and not(ω), where the class ω is in the simplest

case a function

ω : <p 7→ {0, 1} (A.1)

that partitions the feature space X into a set Y = ω−1(1), containing the positive examples

of ω, and its complement Y = X − Y , containing the negative examples of ω. Each example

is a pair < x, ` where ` is a label defined as

` = ω(x) =

{
1, xi ∈ Y

0, xi /∈ Y
. (A.2)

Then each value of the image description is analysed individually to find salient features

regarding to ω. Individual feature selection is carried out applying statistical hypothesis

testing.

A co-ordinate of the feature vector is marked as salient -or retained feature when the

two-sided alternative hypothesis H1 is true. Conversely, we are looking for samples in which

the null hypothesis is false. In such a case, the distribution of the feature in Y is different to

that in Y , which can be written as

H1 : y 6= y , (A.3)

where y = Y [k], y = Y [k] and 1 ≤ k ≤ p is the co-ordinate.

In the two-sided alternative there is not strong prior reason for expecting a shift in a
particular direction [137]. Otherwise, the possibilities are:

H1 : y > y,y is shifted to the right of y , (A.4)



97

H1 : y < y,y is shifted to the left of y , (A.5)

and the null hypothesis is

H0 : y = y,y is the same as that in y . (A.6)

The Wilcoxon test is based upon ranking the NY + NY = NX features of the combines 
sample. Each feature value has a rank established in ascending order: the smallest has rank

1, the 2nd smallest rank 2, etc. The Wilcoxon rank-sum test statistic is the sum of the ranks

for features from one of the samples [137].

Tab. A.1 describes the rank-sum calculation for a small sample of 20 descriptions. Vectors

y and y contain instances from the 1st feature of each vector. As can be observed, each

feature in a tie is associated to an average rank.

An estimated P-value close to zero signals that the null hypothesis is false and consequently

the feature is marked as salient.

Tab. A.1: Rank-sum calculation
Given y 14 14 10 12 25 20 10 14 15 15

y 12 24 21 17 9 24 12 13 16 16
Calculate the Rank
Feature value: 9 10 10 12 12 12 13 14 14 14 . . .
Vector: y y y y y y y y y y . . .
Rank: 1 2 3 4 5 6 7 8 9 10 . . .
Average Rank: 1 2.5 2.5 5 5 5 7 9 9 9 . . .
Compute the Sum wy

For the y group, wy = 2.5 + 2.5 + 5 + 9 + 9 + 9 + 11.5 + 16 + 19 = 95
Estimate the P-value
P-value (Wy ≤ 95) = 0.1357 and P-value(Wy ≥ 95) = 0.2713

For larger samples [137], the distribution of Wy as if it were 
Normal(µy, σy), where

µy =
NY (NY + NY + 1)

2
(A.7)

and

σy =

√
NY NY (NY + NY + 1)

12
(A.8)

More precisely,

pr(Wy ≥ wy) ≈ pr(Z ≥ z) , (A.9)

where
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z =
(Wy − µy)

σy

(A.10)

and

Z ∼ Normal(0, 1) . (A.11)

For the two-sided test, if wy falls in the lower tail

P − value = 2pr(Wy ≤ wy) , (A.12)

whereas if wy is in the upper tail

P−value = 2pr(Wy ≥ wy) . (A.13)



Appendix B

Rule Generation

B.1 Frequent Pattern Mining

Continually recurring relationships between low-level features and high-level concepts are

found applying a knowledge discovery technique. This technique derives from a solution of

the frequent pattern mining problem known as association rule mining (Agrawal et al. [163]). 
An association rule can be formally described as follows:

Let I = {i1, . . . , in} be a set of literals called items and T = {t1, . . . , tm} be a set of

transactions where each transaction tk is a set of items such that tk ⊂ I.

Let tk = X be a transaction with a set of items corresponding to itemset X. Transaction

set T is said to contain itemset Y if Y ⊂ X.

The support of itemset X, denoted as sup(X), is the number of transactions in T con-

taining X.

Given a user-specified support threshold minsup, X is called a frequent itemset or frequent

pattern if sup(X) ≥ minsup. The problem of mining frequent itemsets is to find the complete

set of frequent itemsets in T with respect to a given support threshold minsup.

An association rule is an implication of the form X ⇒ Y where X ⊂ I, Y ⊂ I and

X ∩ Y = ∅.
The rule X ⇒ Y holds in the transaction set T with support s if s% of transactions in T

contain X ∪ Y . In other words, if sup(X ∪ Y ) ≥ minsup.

The rule X ⇒ Y holds in T with confidence c if c% of transactions in T containing X also

contain Y . In other words, if sup(X∪Y )
sup(X)

≥ minconf

Given a set T of transactions, the problem of mining association rules is to generate

all association rules having support and confidence greater than the minimum user-defined

support minsup and the minimum user-specified confidence minconf.
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B.2 An Abstract Example

The following abstract example illustrates the usage of association rule mining to generate a

built-in knowledge rule base.

Let xi = [x1, x2]
T be a feature vector extracted from an image i. Let `j a symbol repre-

senting a high-level concept associated by visual interpretations of i’s content.

Let v = {v1, v2} be a set of fuzzy variables associated to each feature, v1 = {v11, v12, v13},
and v2 = {v12, v12, v12} be fuzzy sets defined for each fuzzy variable.

Assuming two feature vectors in the space, x1,x2, the transaction set T is populated

combining information extracted from the fuzzy domain and provided by the interpreter.

The first step is to instantiate the fuzzy variables as depicted in Fig. B.1 and Tab. B.1.

The second step is to filter out fuzzy values equal to zero. The third step is to concatenate

names of remaining fuzzy sets and the concept attached to the image where the features were

extracted.

v11 v12 v13

v 1x1

v21 v22 v23

v 2x2

(a) Feature vector 1

v11 v12 v13

v 1x1

v21 v22 v23

v 2x2

(b) Feature vector 2

Fig. B.1: Fuzzy variables v1, v2 are instantiated with membership degrees of each feature value to corre-
sponding fuzzy sets

Tab. B.1: Fuzzy values
Vector Feature value (i) vi1 vi2 vi3

1 x1 0.4200 0.5800 0.0000
1 x2 0.6700 0.3300 0.0000
2 x1 0.0000 0.2000 0.8000
2 x2 0.0000 0.2910 0.7090

The result is a set of transactions as shown in Tab. B.2. Therefore, transactions consists

of two parts: left-part groups fuzzy sets’ names and right-part is a concept-related symbol

(concept).
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Tab. B.2: Transaction set
Vector Transaction

1 t1 = v11 v21 `j

1 t2 = v11 v22 `j

1 t3 = v12 v21 `j

1 t4 = v12 v22 `j

2 t5 = v12 v22 `j

2 t6 = v12 v23 `j

2 t7 = v13 v22 `j

2 t8 = v13 v23 `j

Given X = v12 v22 and Y = `j, the rule X ⇒ Y holds in the transaction set T = {t1, . . . , t8}
has support s = 0.25 because 25% of transactions in T contain X∪Y . The rule X ⇒ Y holds

in T has confidence c = 1.00 because 100% of transactions in T containing X also contain Y .

Then, the following inference rule is added to the built-in knowledge rule base:

IF v1 is v12 AND v2 is v22 THEN classify as `j (B.1)

The rule mining process has been tested by fixing the minconf to the value 1.0 and varying

the minsup with a step=0.01 until a neck is reached. Fig. B.2 shows the behaviour of the

process and the location of the neck.

Fig. B.2: Neck or stop condition for the rule mining process

The association rules mining process generates all possible combinations of items in the set of 
transactions satisfying the minsup and minconf conditions. Therefore, a filter is required to 
discriminate meaningful rules from meaningless ones.

FP-Tree algorithm proposed by Han et al. [165] is used for mining the association rules. 
According to recent publications, FP-Tree is currently the most efficient algorithm for mining 
frequent patterns.



Appendix C

Fuzzy Reasoning Model

C.1 Fuzzy Systems

A system implementing the fuzzy reasoning model involves three modules: fuzzification, fuzzy

inference, and defuzzification. The fuzzy inference module uses a built-in base of if-then rules.

This kind of systems supports both multiple inputs with a single output (MISO) and multiple

inputs with multiple outputs (MIMO). A system overview is depicted in Fig. C.1.

Input
Variables

Output
Variable(s)

Fuzzification
Module

Defuzzification
Module

Fuzzy Inference
Module

Real Values Fuzzy Values Real Value(s)Fuzzy Values

Rule Base

Fig. C.1: Overview of a system implementing a fuzzy reasoning model

Each input variable is represented in the fuzzy domain using a number of fuzzy sets. These

fuzzy sets are ascribed to one or more rules in arrays called antecedents. Similarly, each output

variable is associated to one or more rules in arrays called consequents. The fuzzy inference

works with rules of the form

IF antecedents THEN consequents (C.1)

C.2 Fuzzification

The fuzzification module maps input variables from the real domain into the fuzzy domain.

This mapping is carried out by computing the degree of truth (or membership values) of an

input variable to each fuzzy set associated to it. Membership values can be approximated by
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piecewise linear functions. Typically, four types of linear functions are used: Z, S, Π, and

Λ. These functions’ names obey to the shapes they look like. Fig. C.2 shows the usage of

piecewise linear functions when computing membership degrees. Tab. C.1-Tab. C.4 describes

the normalization of membership values into the interval [0,1].

f(x)

1

f(y)

f(z)

0

b

c
x y z

(a) Z shape

f(z)
1

f(y)

f(x)
0

b

a
x y z

c

d

f(w)

w v
f(v)

(b) Π shape

f(z)

1

f(y)

f(x)
0

c

b
x y z

(c) S shape

1

f(y)

f(x)
0

b

a
x y z

c

f(z)

w
f(w)

(d) Λ shape

Fig. C.2: Piecewise linear functions used to compute membership degrees. v, w, x, y, z are real-valued vari-
ables. f(·) are piecewise linear (membership) functions. a, b, c, d are co-ordinates specifying boundaries shaping
the functions

Tab. C.1: Z-shape membership function estimation
i Equation µ(i)
x µ(x) = max(min(f(x), 1), 0) 1
y µ(y) = max(min(f(y)), 1), 0) f(y)
z µ(z) = max(min(f(z), 1), 0) 0

Tab. C.2: S-shape membership function estimation
i Equation µ(i)
x µ(x) = max(min(f(x), 1), 0) 0
y µ(y) = max(min(f(y)), 1), 0) f(y)
z µ(z) = max(min(f(z), 1), 0) 1
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Tab. C.3: Π-shape membership function estimation
i Equation µ(i)
x µ(x) = max(min(f(x), 1), 0) 0
y µ(y) = max(min(f(y)), 1), 0) f(y)
z µ(z) = max(min(f(z)), 1), 0) 1
w µ(w) = max(min(f(w)), 1), 0) f(w)
v µ(v) = max(min(f(v), 1), 0) 0

Tab. C.4: Λ shape membership function estimation
i Equation µ(i)
x µ(x) = max(min(f(x), 1), 0) 0
y µ(y) = max(min(f(y)), 1), 0) f(y)
z µ(z) = max(min(f(z)), 1), 0) f(z)
w µ(w) = max(min(f(v), 1), 0) 0

C.3 Fuzzy Inference

Inference rules are not a free form of natural language (Zadeh [166]). They are limited to a set of 
linguistic terms and a strict syntax. Each antecedent (condition associated to the IF-part) of a rule 
corresponds to a specific value of a fuzzy input. Antecedents are instantiated by the fuzzification 
module. Each consequent (conclusion associated to the THEN-part) of a rule corresponds to a 
fuzzy output.

Depending on characteristics of the consequents, the fuzzy inference system (FIS) can be 
adapted to function as a Mamdani FIS, supporting rules with both antecedents and conse-quents 
defined in a fuzzy domain (i.e. fuzzy sets) as is depicted in the illustrative example presented by Fig. 
C.3.

Ri

Rj

A

B

B

C

W3

W2

f1 f2

Ri IF (F1 is Ã) AND (F2 is B̃) THEN Classify as W3)

Rj IF (F1 is B̃) AND (F2 is C̃) THEN Classify as W2)

Fig. C.3: Mamdani fuzzy inference system: antecedents and consequents consist of fuzzy sets

The FIS can also be adapted to function as a Sugeno FIS, which uses rules with consequents

defined in a discrete domain (i.e crisp sets). This kind of FIS is suitable for implementing

typical classification tasks where each element fo the crisp set represents a class. This mode
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is illustrated in Fig. C.4.

Ri

Rj

A

B

B

C

W3

W2

f1 f2

Ri IF (F1 is Ã) AND (F2 is B̃) THEN (Classify as W3)

Rj IF (F1 is B̃) AND (F2 is C̃) THEN (Classify as W2)

Fig. C.4: Sugeno fuzzy inference system: consequents consist of crisp sets

The fuzzy inference module combines antecedent values to assign a value to consequents

attached to the participating rules. A rule participates in the inference process when all its

antecedents have been instantiated.

At this point, a number of antecedents can be true in different degrees. Using an operator
of aggregation, antecedents are combined to determine the value of the rule (Klir and

Folger [155]). This procedure is applied to all participating rules. Tab. C.5 lists several 
operators of aggregation (fuzzy combinations or T-norms) frequently found in the literature.

Tab. C.5: Operators of aggregation (T-norm)
Operator Definition
Minimum T (xi, xj) = min(xi, xj)
Algebraic Product T (xi, xj) = xixj

Bounded Product T (xi, xj) = max(0, xi + xj − 1)

Drastic Product T (xi, xj) =





xi xj = 1
xj xi = 1
1 xixj < 1

It is possible to have consequents in different rules associated to the same output variable.

To determine the value for this consequent, an operator of composition is used. Tab. C.6 lists

the type of operator of composition (fuzzy combinations or T-conorms) frequently found in

the literature.

C.4 Defuzzification

The defuzzification module combines the fuzzy values of an output variable to obtain its

correspondence in the real domain. In the former fuzzy systems, the maximum value was

assigned. Currently, this method is considered very poor, due to the fact that it ignores the
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Tab. C.6: Operators of composition (T-conorm or S-norm)
Operator Definition
Maximum T (xi, xj) = max(xi, xj)
Algebraic Sum T (xi, xj) = xi + xj − xixj

Bounded Sum T (xi, xj) = min(1, xi + xj)

Drastic Sum T (xi, xj) =





xi xj = 0
xj xi = 0
1 xixj > 0

contribution of all the rules. Therefore, there are other alternatives to calculate the output

values. Typically, a method called Centre of Area, which combines fuzzy values using a

weighted average, is used to obtain the crisp value is used.

CoA =

∑
i AiWi∑

i Ai

(C.2)

Fig. C.5 indicates the calculation of W (weight) and A (area) according to the shape and

instance of the fuzzy set.

1
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1
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b
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(a) Z shape
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c 1
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(b) S shape

1

0

b

a

x w

c

d

b

a

c

d

1

0
x w
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b
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x, w

d

b
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w
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x

1

0 d

(d) Λ shape

Fig. C.5: Calculation of center of area. W denotes the weight. x is used to illustrate two possible cases of
fuzzy value, i.e. µ(x) = 1 and 0 ≤ µ(x) < 1. a, b, c, d are co-ordinates specifying boundaries shaping the area

In Eq. C.3 and Eq. C.4 area and weight computation of Z-shape membership functions is

presented.

A =
µ(x)((c− a) + (b− a))

2
(C.3)

W = a +
c− a

2
(C.4)

In Eq. C.5 and Eq. C.6 area and weight computation of S-shape membership functions is
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described.

A =
µ(x)((c− a) + (c− b))

2
(C.5)

W = a +
c− a

2
(C.6)

In Eq. C.7 and Eq. C.8 area and weight computation of Π-shape membership functions is

presented.

A =
µ(x)((d− a) + (c− b))

2
(C.7)

W = a +
d− a

2
(C.8)

In Eq. C.9 and Eq. C.10 area and weight computation of Λ-shape membership functions

is described.

A =
µ(x)((d− a) + (c− b))

2
(C.9)

W = a +
d− a

2
(C.10)

Finally, values obtained applying Eq. C.2 are assigned to the output variables.



List of Notation

i = (i11, i21, . . . , iM1, i12, . . . , iMN) Digital image

D Set of image descriptors

dj (1 ≤ j ≤ ND) Image description (with embedded semantic)

‖dcolour‖ Number of constutient elements used by colour descrip-

tors

‖dtexture‖ Number of constutient elements used by texture descrip-

tors

X Set of p-dimension feature vectors

xi (1 ≤ i ≤ NX) Feature vector

x (x ∈ <) Feature value

Ω Set of classes

ωk (1 ≤ k ≤ NΩ) Class (or semantic category)

f : X 7→ Ω Multi-class classifier

fk : <n 7→ {0, 1} Binary classifier

L Lexicon

`j (`j ∈ L; ωk ( `j) Concept-related symbol (label) associated with class ωk

L ⊂ L Set of concept-related symbols

A Image annotation process

S(0) Abstract non annotated image space

S(t) Abstract annotated image space

S(0) ª S(1) ª, . . . , ª S(t) Annotation session

J(X,V,U) Criterion function

V Set of c (2 ≤ c ≤ NX) cluster prototypes

U Matrix belonging to the set of all possible fuzzy parti-

tions =
C = {c1, c2, ldots} Set of clusters

uij Degree of membership of vector vi to cluster j

vj p-dimension prototype

d2(·) Any distance norm expressing similarity between two

arrays



m (1 < m < ∞) Fuzzy exponent

X/E Quotient set that forms a partition of the feature space

φ : X 7→ X/E Clustering mechanism used as a classification function

Xd Labeled data set

Xu Unlabeled data set

b Indicator vector of (un)labeled data

F Matrix of known membership degrees

β Scaling factor to keep balance between unsupervised

and supervised data

δ Criterion used in the Picard Iteration

ε Maximum number of epochs, fuzzy c-means

I Set of literals called items

s Rule support (Association rules mining)

v = {v1, v2, . . . , vNv} Set of fuzzy variables

T Set of transactions

ti,j =< xi, `j > Transaction

µ eA(xi) ∈ [0, 1] Membership function

u1, u2, . . . , uND
Receptive fields

y RBFN output

wj Weights used in the RBFN model and semantic profiles

Φ Activation matrix

Y = ω−1(1) Set of positive examples of ω

Y = X − Y Set of negative examples of ω

H0 Null hypothesis

H1 Two-sided alternative hypothesis

y = Y [k] (1 ≤ k ≤ p) Vector consisting of NY instances of k-th feature

y = Y [k] (1 ≤ k ≤ p) Vector consisting of NY instances of k-th feature

Icolor = ICLD | ICSD | ISCD Indexes of retained colour features

Itexture = IEHD | IHTD Indexes of retained texture features

x = [xcolour|xtexture]
T Feature vector as an aggregation of colour and texture

descriptor elements

α Confidence level




