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Abstract

Image semantic segmentation is the task of associating a semantic

category label to each image pixel. This classification problem is charac-

terised by pixel dependencies at different scales. On a small-scale pixel

correlation is related to object instance sharing, while on a middle- and

large-scale to category co-presence and relative location constraints. The

contribution of this paper is twofold. First, we present a semantic segmen-

tation framework that jointly learns category appearances and small- and

middle-scale pixel dependencies. The algorithm computational complex-

ity is reduced by considering these two classes of dependencies separately.

In particular, small-scale dependencies are accounted by clustering pixels

into larger patches via image oversegmentation. To tackle middle-scale

dependencies we propose a system based on a Conditional Random Field

(CRF), that is, a discriminative graphical model, built over the patches.

In this context, we propose a novel strategy to exploit local patch aspect

coherence to impose an optimised structure in the graph that allows to

have exact and efficient inference. The second contribution is a method
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to account for full patch neighbourhoods without resorting to graphical

structures containing loops. We introduce the concept of weak neighbours,

which are connected to a patch in the image but not in the chosen graph.

They are pre-classified according to their visual appearance and their cat-

egory distribution probability is then used in the CRF inference step.

We present experimental evidence of the validity of the method, showing

improvements in comparison to other works in the field.

1 Introduction

Image understanding is the process of recognising and establishing relations be-

tween objects depicted in a scene. The tasks of object detection, localisation,

image classification and image semantic segmentation are strongly related to

understanding. In particular, semantic segmentation, or semantic labelling, is

the task of associating a category label to each pixel of an image, obtaining a

category label map as a result. An example of such a segmentation is presented

in Fig. 1 for an image from the Microsoft Cambridge (MSRC) image dataset1,

used throughout the paper and for the experimental evaluation. The key dif-

ference of the semantic segmentation task with the one of object detection is

that in the first case there is no concept of object instances. On the contrary,

object detection algorithms often model object instances as structured entities.

Therefore, the latter ones deal only with an object category at time and fail

contextualising the result in a global scene classification. They also are intrinsi-

cally less scalable to many categories, due to the fact that a separate, complex,

structured model has to be present for each object category. Semantic segmen-

tation has applications in many areas, including human-computer interaction,

image retrieval, and automated systems.

In low-level semantic segmentation, image pixels are analysed and classi-

fied according to features locally extracted. However, it is of great importance

to consider contextualisation during the classification. For example, adjacent

1Available on-line: http://research.microsoft.com/vision/cambridge/recognition/.
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pixels have similar properties and have high probability to belong to the same

object. There is therefore a strong short-scale correlation between them. Addi-

tionally, there are middle- and large-scale relationships between categories to be

considered: for instance, co-presence and neighbourhood probabilities strongly

depend on categories.

System overview and contributions. We propose a part-based approach

for image semantic segmentation, presenting two main contributions in the area.

The first contribution is a full semantic segmentation framework that jointly

models the appearance of different categories and the relationships between

these categories. A diagram of the system is represented in Fig. 2. In partic-

ular, with our method the complexity of modelling dependencies at different

scales is broken by a two-tier approach. In a first step, homogeneous patches

are extracted from the images. Pixels are grouped into coarser patches, or

super-pixels, that are homogeneous in terms of features and therefore highly

likely to be part of a single object instance. This step addresses the short-scale

pixel dependencies. In the second step, the image is analysed at patch-level,

with the advantage of having simpler structures to model and classify, with-

out losing precision on region boundaries. Patch appearance and dependencies

are modelled via a Conditional Random Field (CRF), that is, an undirected

discriminative probabilistic graphical model, that is built over the patches and

describes the probability of different patch labelling configurations. The CRF

model accounts for middle-scale dependencies. Patches are represented in terms

of colour- and texture-based features locally extracted. These features represent

the observation in the labelling model and are also used as a support informa-

tion for the graphical structure generation. The structural choice is important

because considering all the dependencies between different patches can make

the problem intractable. For this reason, we propose a method to generate an

effective loop-less graph in which inference can be performed efficiently. To this

end, we build a tree over the patches encouraging connections between patches
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that are coherent in appearance, thus maximising the expected local correlation.

The second contribution presented in the paper is related to the previously de-

scribed labelling framework, and in particular to the structural choice. Basing

the analysis on a tree limits the amount of considered local context for patches,

since many neighbours are not connected. We propose a method to partially

account for full patch neighbourhoods, without introducing loops in the graph.

This is based on a two steps classification and the consideration of weak priors

for neighbours. Patches are at first classified independently according to their

appearance and then the obtained distribution over the category labels is used

as additional feature when considering neighbours relationships for nodes not

connected in the tree.

The paper is organised as follows: Sec. 2 presents a brief review of works

related to the semantic labelling problem, outlining differences with our pro-

posal. In Sec. 3 the segmentation algorithm used to obtain the image patches

is discussed, while the features associated to the obtained patches are discussed

in Sec. 4. The learning process is treated in Sec. 5, and Sec. 6 is devoted to

the training and inference in the proposed model. Experimental results and

a comparison with other works in the area are presented in Sec. 7. Finally,

Sec. 8 comments on the proposed approach, briefly discussing possible future

directions of work.

2 Related Work

One of the most popular and successful methods in associating categories to

features in images is the probabilistic Latent Semantic Analysis (pLSA) [1], an

application to the image domain of the bag-of-words framework [2]. This method

is indeed based on latent topics, therefore a pixel level labelled ground truth is

not required for training. Traditionally, features are extracted at salient points

and then clustered into visual words. To use pLSA for semantic segmentation,

Verbeek and Triggs [3] extract visual words in a dense grid and take advantage
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of the labelling availability to impose constraints on the topics distributions

during training. In their work, spatial consistency is enforced through a Markov

Random Field (MRF), a generative probabilistic graphical model. However, in

contrast with our proposal, their work is mainly based on the bag-of-words

paradigm. In the basic formulation of pLSA spatial information related to

visual words is ignored. This simplifies the approach but on the other hand

strong correlations between close words are ignored as well. Recently, a number

of approaches addressed this shortcoming [3, 4, 5].

Considering explicit pixels or patch dependencies in a probabilistic model

is in general intractable for dimensionality reasons, resulting in a probability

function of hundreds or thousands of variables. Probabilistic graphical models

ease this task because they allow to explicitly specify direct dependencies be-

tween elements [6]. In particular, discriminative models have recently witnessed

remarkable success in object detection and semantic segmentation tasks [7].

Conditional Random Fields (CRFs) [8] have proved to be a valuable tool for

semantic labelling [9, 10, 11]. A CRF is the discriminative version of a MRF,

an undirected probabilistic graphical model in which a configuration likelihood

is described through a function factorisable on the graph cliques. To limit com-

plexity, only local connections are usually considered. Therefore, CRFs are a

useful way to account for short- and middle-scale dependencies. The field can

be applied at pixel level [9, 12] or patch level [10, 11, 13].

For models applied at pixel-level, CRF will tend to enforce labelling coher-

ence at a short-scale. An advantage of this approach is the possibility for an

accurate object segmentation, but on the other side the size of the resulting

graph makes the training step complex. Moreover, in order to model longer

range dependencies, additional strategies are needed. TextonBoost and its ex-

tensions [9, 12] offer an example of pixel-based approach. Longer range inter-

actions are considered by using a boosting approach on texture descriptors and

clustering pixels in different regions at image level. The main drawbacks of such

a method are the hard-thresholded decision in the texture-based clustering and
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the high complexity associated with the training of the system. However the

achievable precision in the object boundary detection is high.

A different approach, chosen in our work, is to apply the CRF at patch-level.

Usually methods operating at patch-level obtain a lower precision in the category

boundaries, due to the coarse scale labelling, in favour of a more lightweight

system that additionally models less-local dependencies. Verbeek and Triggs [11]

propose a CRF that is applied to a grid of rectangular patches extracted from

the image. The method explicitly addresses the presence of multiple categories

within a single patch. This event often occurs with their method because the

patch extraction is not driven by the image content but is fixed. This drawback

also introduces errors in the final labelling, where all the pixels assigned to a

patch are labelled uniformly. Global and long range dependencies are considered

in terms of global and distributed histograms of visual words. In this paper we

use oversegmentation to improve category boundary detection, and to have more

consistent patches as an input to the labelling block. An additional difference

with the work of Verbeek and Triggs is that with the CRF we jointly model

appearance and relationships between patches, not recurring to visual words

that can discard important visual information when computed.

Furthermore, CRFs have been used to impose layout constraints only, with-

out inter-patches local connections [10]. In this method the role played by the

graph is fundamentally different. The CRF is used to impose layout configura-

tions learnt from the dataset. The spatial patterns are used to influence labelling

spatial configurations over the image. The use of a defined number of allowed

layouts presents limited generalisation properties. Our pairwise inter-patches

connections represent more generalisable relationships and favour smooth la-

belling.

For fields built over patches, these can be selected in order to ease the learn-

ing of a coherent appearance model for them. Rectangular patches are easy to

extract but they present problems related to the presence of mixed categories

within them. Another possibility is to obtain patches through oversegmen-
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tation [14], as in this paper. Toyoda and Hasegawa [13] in particular use a

colour-based segmentation approach. In general, this choice does not lead to

robust and reliable patch boundaries, since colour alone is not a sufficient clue

to separate object instances. In the aforementioned method, the authors use

distributed features, as well as distributed categories compatibility tables, to

consider long range dependencies. This makes the model very complex in terms

of inference, and its parameters are simply imposed rather than be learnt in a

training phase. He et al . [15] use the Normalised Cuts (NCuts) algorithm [16]

to obtain oversegmentation. The resulting patches are analysed with a mix-

ture of standard CRFs in which neighbouring patch labels dependencies are

modelled through a categories compatibility table. In contrast to our work, the

appearance for the single CRF is learnt separately using a multilayer perceptron

classifier, leading to suboptimal performance.

3 From Pixels to Patches

In this work we use the NCuts algorithm [16], similarly to He et al . [15], to

obtain homogeneous patches. In this way we break the problem complexity by

separately addressing very short-scale pixel correlation and middle-scale patches

dependencies. Unsupervised segmentation is based on homogeneity of pixels

clusters with respect to a certain metric. With the choice of the correct metric,

based on both colour and texture information, oversegmentation is a valid strat-

egy to isolate groups of pixels that are very likely to belong to a single instance

of an object. Therefore, we combine the advantages of patch-based approaches

with a generally accurate segmentation result. An accurate segmentation is fun-

damental since errors at this stage can not be recovered in the labelling phase.

The NCuts algorithm represents the state of the art in image segmentation, even

though its requirements in terms of time and memory are substantial. However,

in contexts where resources are limited, other segmentation approaches can be

used instead, since the segmentation scenario is not critical in this case due to
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the high number of target patches.

The NCuts algorithm is a spectral clustering method that aims at grouping

connected pixels according to a similarity measure. To this end, we define the

similarity matrix W = {wij} in which wij measures the similarity between the

pixels i and j. Additionally, we consider pixels as nodes in a graph G = (V , E),

in which edges in E are weighted according to W. It is therefore possible to

define the cut between the disjoint partitions A,B ⊆ V as

cut(A,B) =
∑

a∈A,b∈B

wab , (1)

and the volume of A as

vol(A) =
∑

a∈A,v∈V

wav . (2)

The NCuts algorithm for K clusters minimises the cost function

KNcuts(V1, . . . ,VK) =
K∑

k=1

cut(Vk,V\Vk)

vol(Vk)
, (3)

where Vi ∩ Vj = ∅ for i 6= j and
⋃

k Vk = V . This problem can be solved

efficiently (although not exactly) by computing the eigenvalues and eigenvectors

of the generalised eigenproblem

(D − W)y = λDy , (4)

where D is the diagonal matrix of the vertices degrees di =
∑

j wij . Minimising

Eq. (3) in practise leads to balanced regions that will have a comparable area

due to the terms vol(Vk).

To calculate W we use the similarity measure described by Martin et al . [17].

Region boundaries can occur either due to the presence of strong edges, or due

to a change of the texture pattern. The nature of these two kind of boundaries is

different. Boundaries due to edges present a strong response to gradient-based
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features. On the other side, textures are well represented by the response to

Gaussian filterbanks. The weight between two pixels is inversely proportional to

the probability that an object boundary is present between them. This probabil-

ity is obtained by first evaluating texture- and colour-based boundary presence

probabilities separately and then fusing the result via a logistic regression. An

example of the segmentation results obtained with this approach is given on the

left of Fig. 3, together with the related ground truths for a visual evaluation of

the accuracies of the categories boundaries.

4 Feature Extraction

Object instances of different categories can not be discriminated with the same

degree of accuracy with the use of a single type of feature. Instead, multiple

features related to different traits of the patches have to be obtained. A feature

that is highly discriminative for one category can be almost uninformative for

another one. Three types of features have been used:

Texture/edge features: texton descriptors, as described by Malik et al . [18],

are extracted. Textons are histograms of visual words obtained clustering

vectors computed at pixel level by applying oriented filterbanks at dif-

ferent scales. Unlike in Malik et al ., though, the visual words dictionary

(consisting of 300 words) is obtained from the entire dataset and shared

among images, rather than being image-based. For each patch, the his-

togram is extracted taking the entire area as a support, but weighting

pixel contributions with a Gaussian window centred at the patch centre

of gravity. Finally, the dimensionality of the descriptor is further reduced

to 40 by Principal Component Analysis (PCA).

Colour features: we use the robust invariant hue descriptor introduced by

van de Weijer and Schmid [19]. This is a histogram of hue values obtained

from a normalised image weighted on the colour saturation values. We use

histograms of 20 bins. The support for these features is the entire patch
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area, again with the contribution of different pixels weighted based on the

distance from the patch centre of gravity. A smoothing of the histogram

reduces the impact of the quantisation error.

Position features: the normalised position of the patch centre of gravity is

considered as additional feature, to account for the weak information as-

sociated to the location within the image of certain categories such as sky

or grass.

5 Labelling Subsystem

To demonstrate the role of the aspect coherence in the patching process we

start by considering a simple discriminative model that treats different patches

as independent (no structural information). In a second phase, this model is

enriched with neighbouring categories compatibility tables, obtaining a CRF

model, in which connections have to be accurately chosen. Finally, we introduce

a method to incorporate full neighbourhoods awareness at patch level without

introducing loops in the graph, using a two stage labelling.

5.1 Independent Patches Discriminative Model

Initially, we aim at labelling an image by analysing patches independently. For

each image, we extract a set of descriptors X composed by the feature vectors

xj ∈ R
n associated to each patch j. We use a discriminative model to learn

independently the appearance of each patch. A softmax function expresses the

probability that the patch j takes the label y ∈ L, given the observation vector

xj as

p(y|xj ; θ) =
eθy·xj

∑
y′∈L e

θy′ ·xj
. (5)

The model parameter vectors θy express the compatibility between the appear-

ance vector xj and the label y. The patches are independent, so the probability
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of a labelling y = {y1, . . . , ym} for the entire image is

p(y|X; θ) =

m∏

j=1

p(yj |xj ; θ) , (6)

where j spans over the m image patches.

5.2 CRF Model

Dependencies between neighbouring patches can be taken into account by ex-

tending the model presented in the previous section and adding to Eq. (5) factors

of multiple variables, which results in a CRF. A CRF is defined over a graph

G = (V , E). The node vj ∈ V is related to the j-th patch category label variable

yj ∈ Y. Edges in the graph represent direct probabilistic dependencies between

these variables. The graph is Markovian, that is, each variable is independent

on the entire graph when conditioned on its neighbours,

p(yj |Y \ {yj}) = p(yj |Nyj
), Nyj

= {yk : (j, k) ∈ E} . (7)

Under this assumption, the CRF can express probabilities that are in the form

of a Gibbs distribution

p(y|X; θ) =
eΨ(y,X;θ)

Z(X; θ)
, (8)

where Z is a normalisation factor,

Z(X; θ) =
∑

y∈Ln

exp (Ψ(y,X; θ)) . (9)

The so-called local function Ψ has the form

Ψ(y,X; θ) =
∑

c∈C

φc(yc,X; θ) , (10)

where C is the set of cliques in the graph, φc is the potential function associated

to the clique c and yc is the projection of y in c, that is, yc = {yi : vi ∈ c}. If
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only singleton potential functions (one-node cliques) are considered, the model

falls back into a softmax function. Instead, we now define singleton and pairwise

potential functions, used to model patch appearance and neighbour relationships

respectively. Therefore, the local function assumes the form

Ψ(y,X; θ) =
∑

v∈V

∑

k∈K1

θkφ
1
k(yv,X) +

∑

(i,j)∈E

∑

k∈K2

θkφ
2
k(yi, yj,X) , (11)

where in Eq. (11) we made the dependency of the local function on the parameter

vector θ explicit by weighting each potential function by a factor θk; K1,2 are

the set of indices k of the parameter vector θ referring to different unary and

pairwise potentials.

Potential Functions. In Eq. (11), the singleton potential functions φ1
k encode

the compatibility between feature vectors and category labels. They depend on

local patch features, xv, and have the form of selector functions, φ1
k(yv,xv) =

xvuk
δ(yv, lk), where uk ∈ [1, n] spans the feature vector and lk ∈ L the sets of

possible category labels. The function δ is the Kronecker’s delta. The patch

feature vectors xv are obtained by combining the different descriptors detailed

in Sec. 4, concatenating the relative feature vectors. The functions ψ1
k represent,

in a more flexible notation that is required for the CRF treatment, the same

log-linear model used in Eq. (5) for the independent patches model. Therefore,

the equality θl · xv =
∑

k∈K1,l
θkφ

1
k(yv,xv) holds, where K1,l ⊂ K1 contains all

the indices k for which lk = l.

The pairwise potential functions implement a compatibility Look-Up Table

(LUT) between category labels, and they are selector functions φ2
k(yi, yj) =

δ(yi, lk)δ(yj , l
′
k). There is no dependency from the observation related to the

two patches, and the functions are therefore symmetrical. Compatibilities are

learnt in terms of magnitude of the coefficients θk associated to each function.

An alternate choice of pairwise functions considers the difference of appearance

for the pair of patches. We also considered in the experiments the choice of
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potential functions φ2
k(yi, yj ,x

′
i,x

′
j) = (x′iuk

− x′juk
)δ(yi, lk)δ(yj , l

′
k), that are

further weighted on the uk element of the difference between the feature vectors

x′, that in our case are the hue part of the histogram.

Graph Connections and Aspect Coherence. We opt for a tree structure

to have exact and efficient inference during training (as detailed in Sec. 6). The

method proposed in this paper is to exploit information on the aspect of the

patches in the tree-choice phase. Starting from an initial graph in which all the

nodes corresponding to neighbouring patches are connected, a tree is obtained

using the Minimum Spanning Tree (MST) algorithm. Connections between

patches that are coherent in aspect are encouraged by weighting graph edges

on appearance similarity. The distance between patch colour features has been

chosen as edge weight. The colour feature is used for different reasons. First,

sharp colour changes are often a clear indication of an object boundary. Even if

colour itself is not a good descriptor for some categories, other authors [9] have

noticed that it tends to be shared within object instances. Additionally, the

histogram form of the robust hue descriptor detailed in Sec. 4 offers a suitable

support for the use of a consistent distance metric. Finally, the hue descriptor

equally describes all the patches, except in rare cases of limited illumination in

which the hue measure is not reliable. This is in contrast with texture features,

that poorly describe instances of some categories (e.g. clear sky, some build-

ings, car frames). The metric used to calculate the distance between colour

feature vectors is the symmetric Kullback-Leibler divergence, defined for two

distributions P,Q as

DKLs(P ||Q) = DKL(P ||Q) +DKL(Q||P ) , (12)

where DKL is the (asymmetric) Kullback-Leibler divergence

DKL(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
. (13)
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Results of the MST algorithm are presented in Fig. 3: it is possible to observe

how different objects are very little connected, most of the edges lying between

patches of the same category.

Weak Neighbourhood. We introduce weak neighbours to account for full

neighbourhoods while labelling patches without introducing loops in the graph.

Given a segmented image and a graph built over its patches, the weak neighbours

of a patch are all the adjacent patches not linked in the tree. When performing

the classification using CRF, normal neighbour connections are modelled as in

Eq. (11). Weak neighbours contribute to single node potentials by the means

of previously computed category distributions integrated as additional features.

The estimation of the probability distribution over the category labels for each

patch is obtained by pre-classifying it according to the independent patches

model presented in Sec. 5.1. The reason why a neighbour is “weak” for a

given patch is that the distribution used in the interaction does not change

during inference on CRF. In this way circular interactions are avoided (the only

interaction between two nodes during the inference takes place via the path

connecting them in the tree).

The feature vector containing the category distribution for a weak neighbour

of a patch v can be introduced in the local function in Eq. (11) with single node

potentials of the form φ1,w
k (yv,p) = puk

δ(yv, lk), where p is the distribution

over category labels of that weak neighbour of v. The local function will then

assume the form

Ψ(y,X; θ) =
∑

v∈V

∑

k∈K1

θkφ
1
k(yv,xv) +

∑

v∈V

∑

j∈Nw
v

∑

k∈Kw
1

θkφ
1,w
k (yv,pj)+

+
∑

(i,j)∈E

∑

k∈K2

θkφ
2
k(yi, yj,X) , (14)

where Nw
v indicates the set of weak neighbours for the node v and Kw

1 the

corresponding parameter vector indices. In Fig. 4 an example of the graph

used for the CRF is presented, in which dashed lines represent weak neighbour

14



connections.

6 Training and Inference

Training and inference are performed by maximising the Maximum A Posteriori

(MAP) probability for the training set labelling. In the independent patches

model the log-likelihood used during training is

L(θ) =

N∑

i=1

log(p(yai|Xi; θ)) =

N∑

i=1

mai∑

j=1

log(p(yaij |xij ; θ)) (15)

where the index i spans over all the N images in the training set, mai is the

number of labelled patches for the i-th image and yai is the corresponding

ground-truth labelling. As ground truth label for a patch we considered the

label of the majority of the patch pixels. Eq. (15) can not be optimised on θ in

closed form but a gradient ascent iterative optimisation method is used instead.

In this work, we employ the L-BFGS algorithm [20] for its fast convergence

properties. The choice of the starting point for the L-BFGS algorithm does

not influence the results, since the optimisation problem has a single global

maximum (as when connections are considered, in the CRF model). The k-th

gradient component of Eq. (15) is

δL

δθk

(θ) =

N∑

i=1

mai∑

j=1

xijuk
(δ(yaij , lk) − p(lk|xij ; θ)) , (16)

where uk and lk are the feature vector index and category associated to the

k-th parameter vector coefficient (to be consistent with Eq. (5) we consider k

spanning over all the coefficients of the parameter vectors associated to each cat-

egory). Since the patches are considered and modelled as independent, the ones

that are unlabelled in the training set can be ignored. Inference is performed
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choosing, for each image patch j, the category

yj,opt = arg max
l

{θl · xj} . (17)

In the CRF model the patches are no more independent. However, as long as

the graph presents no loops, efficient and exact inference can be performed via

Belief Propagation (BP). Unlabelled patches cannot be ignored as in the inde-

pendent patches model, because they contribute to the scene being associated to

nodes in the graph. These nodes are therefore treated as latent [11]. Moreover,

a “void” category label is inserted in the dictionary to account for appearance

vectors that are not coherent with other categories. When latent patches are

involved, BP is run twice, both on the full graph and on a conditioned graph

obtained by assigning all the nodes that are labelled in the ground truth. The

likelihood to be maximised is

log(L) =
N∑

i=1

log(Li) −
‖θ‖2

2σ2
θ

, Li = p(yai|Xi; θ) , (18)

where, compared to Eq. (15), we add the term ‖θ‖2

2σ2
θ

as a weak Gaussian prior

imposed to the parameters to control overfitting. The value of the log-likelihood

is obtained as

log(Li) = Zi(Xi; θ) − Zci(yai,Xi; θ) , (19)

where the term Zci is the normalisation factor of the conditioned model for

the i-th image, analogous to Eq. (9). The normalisation factors are obtained

via sum-product [21], a BP algorithm. This method also gives the marginal

probability distributions of single and connected pairs of label variables, that

are required to evaluate the value of the likelihood gradient.

Inference is performed via max-sum [21], another BP algorithm that builds

the best solution iteratively by locally selecting the best label configurations

and propagating the corresponding probability distributions. When run on a

tree, both sum-product and max-sum are guaranteed to converge to the exact
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result in a time that is proportional to the diameter of the tree. On the con-

trary, when considering a loopy graph, the generalised version of BP, Loopy

BP (LBP), offer no guarantees of convergence and on the quality of the re-

sult [22]. The algorithms are reported to converge most of the times to a good

approximation of the correct solution in most practical cases. However, since in

our model the cost function and its gradient are calculated using a differential

form (as in Eq. (19)), errors in one of the graphs introduce inconsistencies in

the gradient ascent method that prevent its convergence. For this reason, it

is not feasible to use LBP in our method. Another approach would be to op-

timise an approximation of the likelihood, using methods such as Contrastive

Divergence [23].

When weak neighbours are considered, at first the training is performed

on the independent patches model, as previously described. Then, the same

model is used to label the training set in order to obtain the weak distributions

used as features in the training of the CRF model. This approach tends to

slightly overestimate the role of the weak neighbours, because the distributions

used during training will be generally more accurate than the ones used during

testing. However, we have noticed that the independent patches model does not

tend to over-fit the training set, especially given the big availability of training

examples compared to the small number of parameters to be set.

7 Experiments

As mentioned in the introduction, for the experiments we used the MSRC image

dataset. This is a challenging dataset containing mostly outdoor scenes, with

the addition of a set of indoor scenes with faces, with cluttered background, mul-

tiple object instances and different object scales and degrees of occlusion. The

pixel level ground truth labelling is provided. Ambiguous pixels are however left

unlabelled (“void”). The database contains 13 semantic categories: “building”,

“grass”, “tree”, “cow”, “horse”, “sheep”, “sky”, “mountain”, “aeroplane”, “wa-
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Model Description
INDNW Independent patches model (Sec. 5.1).
IND as INDNW, but trained weighting the examples based on the

relative category frequencies.
MSTAC CRF model with patches obtained through oversegmentation,

connected in a tree obtained via acMST (Sec. 5.2).
MSTAC,B as MSTAC, but with rectangular overlapping patches extracted

on a regular grid.
MSTHUE as MSTAC, but pairwise potential functions weighted on the dif-

ference in feature vectors.
MSTCC as MSTAC, but weighting the connections for the MST algorithm

in the tree construction phase on the patches centre distance.
MSTWN as MSTAC, with the additional contribution of weak neighbours.

Table 1: Description of the different model configurations that have been tested.

Build.
(14.5%)

Grass
(30.1%)

Tree
(14.1%)

Cow
(7.2%)

Sky
(13.4%)

Plane
(2.8%)

Face
(3.2%)

Car
(7.5%)

Cycle
(7.3%)

Avg.

INDNW 58.4 93.7 72.7 54.8 96.1 25.0 54.9 50.2 55.2 72.4
IND 55.4 92.3 74.6 51.8 96.2 34.4 57.5 52.5 59.3 72.6
MSTAC 61.0 91.7 81.8 73.4 95.1 72.4 82.8 84.2 85.2 82.8
MSTAC,B 55.2 92.9 84.3 78.8 93.1 75.4 88.9 76.0 75.1 81.0
MSTHUE 55.2 92.5 73.8 54.6 95.6 36.9 57.6 53.1 59.5 72.7
MSTCC 57.5 91.5 80.3 76.6 94.3 68.1 87.8 77.4 75.0 80.6
MSTWN 68.7 93.1 85.7 73.5 96.5 73.0 95.8 85.5 85.4 85.6

LITgen [3] 74.0 88.7 64.4 77.4 95.7 92.2 88.8 81.1 78.7 82.3
LITloc [11] 71.4 86.8 80.2 81.0 94.2 63.8 86.3 85.7 77.3 82.3
LITglob [11] 73.6 91.1 82.1 73.6 95.7 78.3 89.5 84.5 81.4 84.9

Table 2: Models comparison table. Relative category occurrences are shown
next to the name, in parenthesis. The configuration associated to each model
is detailed thoughout Sec. 7. The results are in terms of percentages of patches
correctly classified, for each category (for the reference models, the results are at
pixel-level – the difference is negligible given our patch segmentation approach).

ter”, “face”, “car” and “bicycle”. However, we treated the categories “horse”,

“sheep”, “mountain” and “water” as void due to the lack of training data for

reliable training and testing phases. Since the database contains only 240 im-

ages, to un-bias the results we resorted to 4-fold cross-validation for testing.

The dataset has been divided into four subsets containing 25% of the images,

and a training has been independently run four times on three subsets, leaving

out each time a different subset used for testing. The results have been finally

averaged.

To support our claims and to test the validity of the proposals, we performed

a set of tests on different configurations of the models. Tests on each config-
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uration are used to prove a given point, justifying the related design choice.

Therefore, the tested models differ only on a single particular design aspect.

The tested models are summarised in Table 1, and the related results are re-

ported in Table 2. Since the MAP training criterion targets the overall rather

than single category performance, the latter ones can vary significantly between

different configurations. The figures on single category performance are meant

to give an idea of the effects of the proposed design choices on the effectiveness

in modelling different categories. The precision has been calculated in terms

of number of correctly classified patches, where the category of the majority of

patch pixels has been considered as the correct one for each patch. Additional

comments on the experiments are in the remainder of the section.

The category relative occurrences are very different: the most common one,

“grass”, occurs in the 30% of the patches, while the rarest amounts to only

less than 3% of them. While testing the independent patches model we found

that indeed some poorly represented categories suffered from this unbalance, as

shown by the first row of Table 2, where INDNW indicates the model described

in Sec. 5.1. We counteracted this effect by introducing a likelihood category

weighting vector wc whose elements are the reciprocals of the category frequen-

cies in the entire database, or wcj = 1/p(lj). If the categories distribution in the

training image i is represented by the vector pli, the weight for the likelihood

of the i-th image is wc · pli. Results obtained in this way with the independent

patches model are shown in the second row (IND) in Table 2. It is possible

to notice a general improvement on the fairness of classification, with a similar

overall precision. For this reason, all the other models have been trained by

weighting the likelihood as explained.

Then, we ran experiments on structured models. The third row of Table 2,

MSTAC, uses a CRF as described in Sec. 5.2 with our proposed connection model

based on aspect coherence. It is possible to notice a dramatic improvement of

the results when compared with the independent patches model. To prove
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the validity of our choice for patches, we compared the results obtained with

the MSTAC model with a similar model where however patches are taken in

a 20 × 20 regular grid with 10 pixels overlapping. The results for this model

are presented in the row MSTAC,B. It is possible to see how these are globally

worse for the block-based model even though the number of patches in this

latter model amount to roughly double the number (620 blocks compared to

300 oversegmented patches).

As for the choice of potential functions for the pairwise connections dis-

cussed in Sec. 5.2, we tested the functions weighted on the difference on the

hue part of the patches’ feature vectors. Related results are presented in the

row MSTHUE. The reason for the observed under-performance is twofold. The

MSTHUE increases the optimisation problem dimensionality, resulting in a less

effective training. Additionally, the pairwise functions are defined on the differ-

ence of the appearance vectors between connected variables, that is minimised

in the graph construction step. As a result, the pairwise terms are affected to

feature vectors noise and their utility is limited.

We also validated the choice of connections: we decided to test a CRF where

the graph is built using the MST algorithm weighting the edges on the dis-

tances between patch centres (MSTCC). As expected, a drop of performance is

observed, especially for those categories that tend to present elongated patches

and for which colour is discriminative of the single instances, as “aeroplane”,

“car” and “bicycle”. We then considered full neighbourhoods using the weak

neighbours model (indicated as CRFWN in Table 2). We had very promising

results, showing a clear increase in the overall classification accuracy. Addition-

ally, the increase is spread quite uniformly among all the categories.

Finally, in order to prove the general validity of our method, we compared

it with other works that have been tested on the same database [3, 11], and

that have been already described in Sec. 2. In particular, we performed better

than LITgen [3], a generative approach combining MRF and pLSA. We also
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Void Build. Grass Tree Cow Sky Plane Face Car Cycle
Build. 806 1336 23 110 23 36 50 0 143 39
Grass 722 13 3665 91 54 1 11 1 3 1
Tree 376 40 99 1296 8 17 3 5 7 9
Cow 371 41 28 131 711 0 2 11 1 22
Sky 249 50 1 27 5 1640 5 0 14 0
Plane 193 119 22 16 3 1 292 0 2 3
Face 1193 22 20 2 100 6 0 378 0 0
Car 618 159 0 47 18 22 2 0 790 20
Cycle 678 79 5 88 0 1 0 15 1 844

Table 3: Category confusion matrix for the CRF model with graph based on
aspect coherence and weak neighbours. Rows are the system-inferred labels,
and columns are the real category labels. The numbers are in terms of patches.

performed better than the CRF-based LITloc [11]. The limited difference with

the LITglob model [11] is due to the usage, in the latter, of global features that in

our configurations were not present. These features are aimed at accounting for

large-scale dependencies that in our proposal are not addressed. However, being

these features complementary to the ones used in our work, their integration in

our model is a viable direction of improvement.

To have a better insight of the performance of our model, in Table 3 we

present the category confusion matrix for our best performing model, MSTWN.

Much of the confusion between categories is due to some of the inter-category

aspect similarities being comparable to the intra-category ones. Additionally,

in Fig. 5 some examples labelled with the same model are shown. It is possible

to notice how the segmentation of objects is generally accurate. The labelling

of “void” areas is sometimes reasonable, as for the path in the third example

labelled as “building”. However, the absence of certain categories causes the

overestimation of the extent of some objects, as for the “car” and “bicycle”

objects in the sixth and seventh examples, in which the road is absorbed into

these objects. Finally, the absence of the “object instance” concept in the system

makes the presence of single scattered misclassified patches difficult to tackle,

as for the “aeroplane” patch in the second example.
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8 Conclusions

In this paper we introduced a method to label image pixels according to their se-

mantic content. This is based on two steps, to separately address short-scale and

middle-scale dependencies. For the first ones, a spectral clustering algorithm

is used to group adjacent pixels into patches. This helps in finding accurate

regions boundaries while providing simplified, aggregated data to the label in-

ference block. This block, that addresses middle-scale dependencies, is based

on a CRF, that is, a discriminative probabilistic model, to account for patches

context. An important novelty of the method is on the choice of connections

between patches in the graphical model in order to perform fast and accurate in-

ference. This choice is based on aspect coherence between neighbouring patches,

defined as difference between colour feature vectors. This criterion increases the

correlation between linked patches, leading to a sharp performance increase in

comparison to other criteria. In connection to the structural choice, we present

a second contribution. This is related to the introduction of the concept of weak

neighbours, that is, patch neighbours not considered directly in the graph to

avoid graph loops, but weakly accounted in a two-step classification approach.

Experimental results confirm the advantages obtained while considering this ad-

ditional contextual information. Overall, the presented framework proves to be

effective showing good improvements in the labelling process when compared to

other works in the literature.

The method presents different interesting directions for improvement, one

of the most promising being the utilisation of aspect coherence in association

with more complex graphical structures. This can be done directly considering

the additional information in the CRF framework, although a modified learning

algorithm has to be devised in this case, because an exact inference on the

model is no more possible. Another interesting direction for improvement is

in the integration of distributed features as in Verbeek et al . [11] that have

elsewhere proved to significantly improve labelling results.
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Figures
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Figure 1: Semantic segmentation with, from the left, input image, segmented
image ground truth, and label colours legend for all the categories present in
the MSRC dataset used in this paper.
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Figure 2: Block representation of the proposed system.
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Figure 3: Oversegmentation (300 patches) using NCuts (original images size
321 × 214). In the central column, the ground-truth for the corresponding
images is displayed, with the superimposed segmentation. Finally, in the right
column is the Minimum Spanning Tree based on aspect coherence built over
segmented images.

Figure 4: Example of the used tree structure. The white nodes are the nodes
of the CRF. The solid connections are the aspect-coherence-based MST. The
dashed connections are weak neighbourhoods.
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Figure 5: Images from the MSRC database segmented with the proposed
method. In the first row the original images, on the second row the ground
truth, on the third row our results with the CRFWN model. The category
labels legend is reported in Fig. 1
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