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Abstract

While the cellular physiology of neurons has been studied in great detail and is
reasonably well defined, the underlying nature of their activity is far from under-
stood and continues to be much debated [2] [12, 8]. In the same way that Boolean
logic and theoretical Von Neumann machines [13] have provided the theoretical
basis for computation and helped stimulate the development of practical computing,
we suggest that it may be helpful to study the nature of neural function more ab-
stractly; specifically, without taking into consideration the inherent complexity of
the underlying cellular mechanics. It is commonly assumed by those studying the
functionality of complex natural neural systems that their activity of is equivalent
to computation [8]. It is asserted (by Church’s thesis) that the underlying principles
of computation are fundamentally universal and equivalent, and therefore that
everything a neural system (no matter how complex) is able to do can be done
by any other system capable of general computation [5]. The way computation is
done by neural systems might well be very different from well-known models of
computation (such as Von Neumann machines) but by Church’s thesis they may
be considered equivalent. If the core activity of complex neural systems may be
considered computation and we accept that the neuron is the atomic unit through
which this computation is expressed then an understanding of neural activity must
be preceded by a formal understanding of the neuron itself and of the means by
which the neuron communicates with other neurons. We suggest that to effectively
study and develop a greater understanding of neural function it may be helpful
to design minimal but fully functional artificial organisms in which the complex
cellular physiology is abstracted and simplified but where the need to function in a
complex environment is retained.

1 Introduction

Neural function is often described from the point of view of cellular physiology in elaborate detail
but with very little insight into overall function [2, 11, 8]. On the other hand, in the field of machine
learning, models of artificial simplified neurons are used which pay little attention to the constraints
of empirical observation of the neural networks of natural organisms [4, 6]. The primary focus of
artificial neural networks is to replicate high level functionality observed from studying the behaviour
of complex natural organisms such as learning and recognition (of images and patterns). Despite great
advances in the understanding of the cellular mechanics of neurons (including the complete mapping
of the neural structure of some natural organisms [8]) and claims made for artificial neural networks
(in respect of certain toy applications [6]) there is currently no working model of even the simplest of
natural neural systems [8] and no consensus on the most fundamental aspect of neural function – the
neural code [11]. The neural code is simply the nature of the information passed between neurons
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that are physically linked to each other. To understand and define this information we suggest it might
be helpful to consider a biologically plausible but abstracted hypothetical organism [2], particularly
with respect to its evolutionary development from a simple fixed function system to a more general
system capable of higher level function. Since mapping the neural connectivity of even the simplest
of natural organisms has not led to an understanding of its function [8] we suggest that designing
minimal but fully functional artificial organisms might be helpful in the development of a better more
formal understanding of the neural code.

2 The Simplest Organism

All natural neural systems irrespective of their complexity must serve the underlying needs of
the organism in which they exist. Since the neural systems of even the simplest organisms are
extraordinarily complex (as a result of a billion years of evolution) it may be helpful to deduce the
fundamental principles of these systems by designing a simplified artificial organism; an artificial
organism whose behaviour is the expression of a set of well-defined rules [2]. The expression of these
rules will be implemented using a small number of atomic units to form the inter-connected neural
system; the function of these units is abstracted rather than being dependant on the complexities
of cell biology. Nevertheless, they must remain biologically plausible. It may be assumed that
abstracted functionality may readily be implemented by cell biology, in the same way that abstract
architectural design is translated to physical structure. Conversely, it is often the case that determining
the abstract design and functionality from a physical implementation is much more difficult (or indeed
impossible). Further, it might be useful to observe how the components of the simplest organisms
might develop over time to meet the challenges presented by the environment. All complex natural
organisms have simple single celled ancestors and development of complexity is by necessity a step
by step process where each step must have utility to the intermediary organisms. Neurons themselves
must develop and differentiate step by step from non-specialised cells in the earliest of multi-cellular
organism, and each step on this path to differentiation must have utility to the host organism.

The fundamental role of any practical neural system has its roots in motor control. The flagellum is
the simplest of natural motor systems, which has its origins in single celled organisms that existed
more than a billion years ago [10]. It consists of a simple rotary motor connected to a whip like
filament structure whose primary role is to generate thrust (and thereby movement) when rotated in
a liquid environment, allowing the organism to swim. The power of the flagellum, and associated
speed of rotation, may readily be controlled by modulating the proton motive force that drives the
motor. This is generally implemented by an interface that applies an electrical potential, with the
strength of the potential modulating the application of motive force by the motor. Practical control of
an organism may therefore be expressed as the application of a potential.

Motors are generally not useful without control and for a natural organism it is critically important
to be able to direct its motors appropriately in respect of the conditions found in the environment.
Organisms that are able to respond to the presence of food or signs of a predator have a great
advantage over those that lack this ability. To determine the conditions of the environment requires
the ability to measure (or sense) relevant properties of the external environment, such as atmospheric
carbon dioxide or electromagnetic radiation. The simplest organism with the ability to measure the
external environment and act in response to those measurements is a purely sensory-motor organism;
in which a sensor is directly linked to a motor (see Figure 1a). The sensor produces a potential based
on some measure of the environment and this potential actuates the motor directly. This arrangement
may be implemented within a single celled organism or a very small multi-celled organism.

2.1 Communicating between Sensor and Motor

As an organism evolves from a single cell organism to a multi-cell organism, individual cells will
begin to specialize; forming specialist motor cells and specialist sensor cells. The sensor cells found
in multi-cell natural organisms express their measurement as a membrane potential, which varies in
strength as a function of the strength of the stimulus which activates the sensor. Almost all eukaryotic
cells (that is, cells of more complex organisms) actively maintain a non-zero membrane potential,
and therefore the developmental path for specialist cells that use this membrane potential as a means
for communication is straight forward. The establishment of specialist cells whose primary purpose
is communication allows subsequent specialization that adds greater functionality.
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When the sensor and motor cells (which perhaps in the past existed within a single cell organism) are
separated by an insulating cell wall, an interface needs to exist which allows the potential produced
by the sensor to be passed to the motor cell that it actuates. One such mechanism that allows adjacent
cells to communicate by allowing a potential to pass is a simple gap junction. The design of a neural
control system for the simplest of multi-cellular organisms may therefore consist of a sensor cell
directly linked to a motor cell. The sensor cell will produce a continuous potential which in turn
passes through the gap junction to directly drive the motor cell; the continuous potential from the
sensor cell actuates the power the motor cell applies to the motor.

Size is often a critical factor in the success of an organism within a given evolutionary landscape. This
has a fundamental impact on how a simple sensor-motor mechanism is organized. As an organism
becomes larger there will be increasing pressure to separate motor from sensor. A motor is often
best located at the rear of an organism whereas a sensor is sometimes most useful at the front of
an organism. An interim solution would be for the sensor and motor cells to stretch and become
elongated to preserve the gap junction (and indeed the cells of many natural organisms do just this).
This allows an organism some flexibility in respect of size, but this solution is quite limited; there
is a practical limit on how long individual sensor cells can become. Once this limit is reached, the
organism can only become larger by introducing intermediary cells between the sensor and motor
cells. It is possible to pass a potential from sensor to motor via an intermediary cell that relays
potential, but it is impractical as the potentials produced by sensor cells are typically very small and
easily dissipated. An increase in an organism’s size therefore makes necessary a more general long
distance sensor-motor communication mechanism. One simple solution is to take the energy of a
weak but continuous potential and to concentrate it into very brief but much more powerful potentials;
these spikes in potential (or action potentials) have the ability to travel much greater distances than a
continuous potential. In natural organisms, action potentials developed alongside a new mechanism
that allows communication between cells without a physical connection; these are special chemical
junctions (synapses) which allow cells to communicate while remaining electrically insulated from
each other. This prevents the action potential produced by the cell from being dissipated by the act of
transmission.

A cell that has the ability to transmit a potential without dissipating it, makes possible multiple
junctions that are able to accurately transmit the same potential. A direct electrical connection, which
inherently dissipates the potential it transmits, cannot accommodate multiple junctions. While greater
insulation and more powerful potentials allow greater distances to be bridged, action potentials
inherently dissipate over distance. Larger distances can be bridged by adding insulation to the
part of the cell that transmits the action potential. Insulation is found in more complex natural
organisms in the form of specialist glial cells which flatten and wrap around elongated neural
structures that propagate the action potential. Irrespective of the degree of insulation, however, all
action potentials dissipate as a function of distance. Since synaptic distance is an unknown, all
action potentials will dissipate by an amount not known to the means of transmission and therefore
the power (strength) of an action potential cannot be used to carry information. Reception and
transmission of action potentials therefore becomes inherently an all-or-none function. The synaptic
transmission mechanism is all-or-none and does not transmit any information about the strength of
the action potential sent across the synapse. The receiver cannot therefore know the strength of an
action potential that triggered the synapse; it can know only that it has received an action potential.
The cell’s only function is to decide whether or not to produce an action potential in return, something
which is also all-or-none. Action potentials may be considerably attenuated by distance (or other
factors) but as long as the outgoing synaptic link is triggered, action potentials will fully regenerate
as they are relayed, without any loss of information. These specialist cells (referred to as neurons) are
divided into two general regions: one region which senses and integrates action potentials received
from incoming synapses and a second region which produces and directs action potentials toward
outgoing synapses.

The simplest neuron (for the hypothetical sensor-motor organism) is simply a relay neuron. When a
relay neuron receives an action potential it will simply produce a single action potential with as little
delay as possible. In classical artificial neural network terms this type of neuron may be described as
having a threshold of one and synaptic weights of one. Action potentials are however not produced
directly by a sensor cell and they cannot actuate a motor cell. The potentials produced by a sensor cell
must first be coded into action potentials, which are then relayed to the motor cell, which decodes an
action potential sequence back to a continuous potential that can actuate the motor. Action potentials
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do not by themselves represent a continuous (or graded) potential and therefore the potential produced
by a sensor cell must first be encoded for transmission over the network of relay neurons and then
decoded and translated back to a continuous potential for the motor cell. This encoding and decoding
requires specialist neurons: sensor neurons and motor neurons.

2.2 Coding Sensor Information with Action Potentials

In the simplest case, an organism’s neural architecture consists simply of a sensor cell communicating
directly with a motor cell. This can be implemented by linking a sensor neuron directly to a motor
neuron with a single synapse (see Figure 1d). As the hypothetical organism increases further in size
the distance between sensor and motor can be bridged by any arbitrary number of intermediary relay
neurons.

While the development of action potentials and synapses is complex, a step by step transition from
neurons that produce a continuous potential to those that produce action potentials is straight forward.
Once the transition is complete, the direct physical link that is required for communication between
sensor and motor cells will be broken. An electrical synapse (implemented by a gap junction)
transmits potential directly, but once the direct link between individual cells is broken, the link
becomes something that transmits only information. If a physical potential produced by a sensor
can be reproduced from the code, the transmission of the potential can be abstracted purely as the
transmission of information. The initial sensor potential must be coded by the sensor neuron and at
the destination the information must be decoded by the motor neuron, which produces the potential
that drives the motor. This information that must be coded and decoded is well defined (real numbers
between 0 and 1 for the hypothetical organism). What is not defined is the nature of the code itself;
how the information is coded.

There are a variety of ways in which information may be encoded using action potentials. The
simplest is a rate code where the strength of a continuous sensor potential is coded by the rate at
which action potentials are sent. A fundamental observation of the sensor neurons found in natural
organisms shows that the firing rate of sensor neurons is a function of stimulus strength [1]. However,
a rate code for action potentials must count action potentials over times and is therefore an integer
function and lacks the necessary degree of precision required to accurately code the continuous
potential produced by the sensors. An action potential rate code is fundamentally a unary code. If
a sensor neuron can fire an action potential every 4 ms then, for a time period of 1 second, only
numbers from 0 to 250 can be coded for. Natural organisms are known to have a much lower latency
than 1 second, and indeed a much higher data rate [11]. A more complex way to code information is
by a temporal code. A temporal code might for example be a binary code where a spike indicates
a 1 and lack of a spike within a set time period indicates a 0. A 40 ms time period could therefore
transmit a 10-bit integer using 4 ms neurons. It is unlikely, however, that neurons are sufficiently
reliable to support a time based binary code, particularly without a master clock that synchronizes the
precise timing required [2]. Furthermore, as most neurons of natural organisms can fire at most every
4 ms, the data rate is also insufficiently high.

The advantage of designing a simple artificial organism is that it allows the Gordian knot of a century
of conflicting observations and theories of increasing complexity about neurons and their function to
be cut by the expedient necessity of designing practical neural circuitry that lives or dies based on
its utility. The sensors of natural organisms are known to be very precise and a sensor potential is
inherently an analogue value. This indicates a high data rate, which must be coded by a small number
of spikes. The simplest way to code a continuous stream of real numbers would be to code sensor
values as the distance between spikes; a high potential is coded by a small temporal distance between
spikes and a low potential is coded by a large temporal distance between spikes. As long as neurons
can accurately code by timing spikes and then preserve this timing when the action potentials are
relayed then the sensor information can be preserved.

Information coded by a sequence of spikes must ultimately be accurately decoded back to the original
potential that it represents. The fundamental property of a neuron (assuming they developed from
sensors) is the ability to measure a physical property. The distance between spikes is a property that
can readily be measured, and a sensor that originally developed to measure a property external to an
organism might be repurposed to measure the interval between the spikes of a neuron to which it is
connected.
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The code for the hypothetical organism therefore has features of both a rate code and a temporal code.
The distance between spikes codes the information and the data rate will be a function of the degree
of precision with which neurons are able to time the spikes. One feature of this code is that large
values may be transmitted much faster than small values. If a neuron is able to time its spikes with a
precision of 30 bits (that is, reliably represent up to 230 different sensor values) then a 4 ms neuron
with a minimum firing rate of 100 ms (distance between spikes) can send a large 30 bit number in
about 4 ms, but a small number would take up to 100 ms.

A temporal rate code for the hypothetical simple artificial organism is therefore a design choice,
which might or might not reflect how neurons in natural organisms code information. For a simple
organism where neurons only repeat action potentials between sensor and motor neurons such a
code is sufficient for the precision, latency and data rate required. The sensor values that are most
important (indicating food or danger) will have an inverse relation between size of the number and
importance; large numbers will generally be more important and therefore can be acted upon more
quickly. The limit on latency is just a single action potential (plus transmission delay and inter-neuron
relay delay), which is consistent with the latency observed in a wide variety of natural organisms [11].
The code may therefore be considered useful for meeting the needs of very simple natural organisms.
With sensor neurons able to accurately code potentials produced by sensors, with motor neurons able
to produce precise potentials from an action potential code and with relay neurons able to bridge any
distance between sensor and motor neurons, the hypothetical organism will have lifted any restriction
on its ability to increase in size.

2.3 Building a Practical Organism

In respect of a practical implementation we will assume the neural system drives a surface dwelling
(in effect 2-dimensional) organism that lives simply by photosynthesis. The primary directives of
this organism are therefore to seek out the sun (and to bask in it once found) and to avoid predators
and other dangers. The sensors of this organism will be two photoreceptors and it will be driven by
two motor driven flagella (Figure 1). The fact that the organism lives by photosynthesis is important
only in that this allows for the simplest of all practical organisms, on organism which is also straight
forward to simulate and which can be built using conventional electronic devices as well as being
similar to very simple organisms found in nature.

By default, photoreceptor sensors have a reverse bias and therefore sensor neurons that are driven
by photoreceptor neurons will fire at a higher rate when light levels are low. Connecting the sensors
of the photosynthetic organism directly to the motors will therefore by default lead to an organism
that will swim toward the light, swim slowly or stop when it has found optimal illumination and
which will turn to evade dangerous shadows (which obscure one sensor but not the other). For sake
of completeness we may assume that the two sensors are linked by a circuit breaker when sensor
values become too high. This will allow the organism to sleep when it is dark. This simple organism
whose nervous system consists of two sensor neurons and two motor neurons (Figure 1d) can readily
be shown to function effectively.
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Figure 1: The neural structures of the simplified hypothetical organism: (a) without sensor or motor
neurons (sensor and motor directly linked by gap junction); (b) abstract representation of the basic
neuron, with activation, inhibition and dendrite structure showing integer division; (c) design of
evader circuit (storage and decrement circuit and sensor subtraction circuit); (d) with sensor and
motor neurons (directly linked but using action potentials to communicate).
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3 Basic Arithmetic

Simple repeater neurons will have a single input synapse and a single output synapse. However, if a
repeater neuron were to have two output synapses each of which connect to two separate neurons,
then the neurons that link to each synapse would both repeat the action potentials produced by a
single neuron – duplicating the action potential sequence being received. In a simple organism a
duplicator neuron might arise from the need to drive two motors rather than a single motor from
a single sensor. Conversely, a neuron with two input synapses will lead to two separate incoming
action potential sequences being combined: it will integrate the action potentials of both neurons
that link to it into a single action potential sequence. Integration is, however, more complex than
duplication. If an action potential from one synapse overlaps with an action potential from the second
synapse (including the resting period) then this will lead to the overlapping action potential either
being delayed or not repeated. When two action potential sequences that are to be integrated are not
identical and not appositionally synchronized then this will produce an imbalanced output sequence.
Only when the two action potential sequences are identical but shifted equidistantly in phase will
the integration of both sequences result in the output of a correct action potential sequence, with
each action potential equidistant from the others. In this limited case, the result will be equivalent
to addition. Although very limited, this form of addition might be of practical use in summing the
output of two sensor neurons if the organism sought to double its sensors.

If the utility of dual sensors outweighs the drawbacks of incorrect addition, then evolutionary pressure
might over time lead to a neuron that would be increasingly more capable of correct addition, with
the side effect of forking the design of a simple repeater neuron to a multi-input multi-purpose neuron.
Adjacent sensors measuring the same physical property will have an identical output potential most
of the time and if they are connected by adjacent sensor neurons it may be that a first step in the
development of a more complex neuron would be that adjacent neurons producing the same action
potential sequence will develop the ability to synchronize their firing to be out of phase, allowing
correct addition by a simple repeater neuron with dual synaptic input. Addition is of such fundamental
importance, however, that any incremental improvement toward a more complete solution to the
problem of being able to correctly add two separate action potential sequences would be of direct
advantage to the organism. The transition from repetition to a more general implementation of
addition is non-trivial and therefore a general solution might lead to considerable internal complexity.
A neuron capable of general addition remains, however, backwards compatible with simple repetition
(repetition is the simplest case of addition).

Addition is much more useful if it can be complemented with subtraction. Synaptic links which lead
to repetition may be said to activate the receiving neuron. Subtraction is inherently the opposite of
activation and may therefore be said to require some form of inhibition. Since it cannot be known
from an action potential whether it is meant to activate or inhibit, dedicated synapses would be needed
for inhibition. Dedicated inhibitory synapses would therefore be a necessary precursor to make
subtraction possible. Developmentally, an inhibitory synapse may have had its origins in a defective
synapse which dissipates an accumulating potential rather than adding to it. Just like addition might
have had its origins with the much simpler function of inserting action potentials into an action
potential sequence, so too subtraction might have had its orgin with the ability to remove individual
action potentials from an action potential sequence. This simple precursor to subtraction would
require an action potential to arrive at the precise time an action potential is about to be produced.
This initially very limited ability to reduce the number of spikes in an action potential sequence might
in time have led to the development of a more generalized arithmetical subtraction.

Once a neuron is capable of addition and subtraction, multiplication and division can easily be
implemented by repeated addition or subtraction using multiple synapses; action potential sequences
can be duplicated and then added or subtracted. However, general multiplication or division require
the use of increment or decrement operators and a comparison operator (end at zero). It may well be
that incremented or decremented repetition with the use of a comparison is too difficult for a single
neuron to implement. The difficulty a neuron whose basic operation is repeating sensor measurement
faces is that is that sensor measurements are inherently real numbers of arbitrary precision, whereas
increments or decrements are integer operations.

When a function is too complex to implement directly in hardware it is often useful to implement
important components that are useful toward a general solution of the problem. Specifically there are
often component functions which can be solved much more quickly when implemented directly in
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hardware and there are other component functions that have a large hardware footprint if implemented
generically but which can be implemented much more compactly with custom hardware. When
attempting to implement multiplication and division from the point of a neuron it might be useful to
first implement simplified integer multiplication and division functions (×2, ×1

2
, ×3, ×1

3
, ×4, ×1

4
,×5, ×1

5

...). This simplified form of multiplication and division is attractive because it it can be implemented
very simply by inserting action potentials or removing actions potentials. For example, to double any
action potential sequence (×2) an action potential can simply be inserted at the midpoints between
the action potentials of an action potential sequence. Division can be implemented just as easily by
simply removing action potentials from a sequence. For example, to divide by two (×1

2
) remove every

second action potentia, to divide by three (×1
3
) remove two out of every three action potentials.

While both simplified multiplication and division are easy to implement in hardware, more abstractly
though we see multiplication as repeated addition and division as repeated subtraction, for which it
is necessary to know the subtractive or additive element. With multiplication the additive element
is simply the number itself. To multiply any number A by one of the constants (×2,×3, ... ,×n) it is
necessary only to know the number A which is then added to itself the required number of times
(A+A, A+A+A, ... A+A+...+A). For division, however, the subtractive element is the multiplicative
inverse of the number and therefore not known. Just as with using British imperial units to measure
size or distance, the key is understanding fractions. With the ‘inch’ unit in particular, integer multiples
of inches are straight forward but most commonly one would deal with smaller sizes which were
measured in fractions of an inch, and this required special skills to cope with efficiently. A bolt
might for example be 3

4
inch or a socket might be 3

16
’ths of an inch. Just as a carpenter or automobile

repairman must be fluent in these arithmetic fractions, so too when designing the neural systems of
simple hypothetical organisms these common fractions must be expressed directly in hardware to
allow designs where the overall number of neurons must be kept to a minimum.

Because integer fractions are so fundamental to the core activity of neurons we suggest that it be
implemented directly by individual neurons themselves. We suggest that the mechanism for this is the
complex branching (dendrite) structure of the input region of neurons. A repeater neuron therefore
requires no dendrite branching at all since it simply repeats any action potential it receives. On the
other hand, a neuron that operates on fractions of 1

16
’ths would need a more complex dendrite tree

that divides four times, and a neuron that operates on fractions of 1
32

’nds would need a tree with a
depth of five. The complexity of the dendrite tree would therefore be a function of the degree of
precision that is needed. The drawback of such an arrangement is that when approaching the degree
of precision needed by the natural world (tree depths of 10, 16 and 32) the dendrite tree structure
needed becomes impractically vast. A major benefit of such a structure would be all the fractions
of the specific depth can be readily calculated simply by connecting to the correct multiple of of
dendrites (for example a spike sequence can be decreased by the fraction of 5

32
simply by connecting

to the synapses of 5 out of 32 branches of the dendrite tree). Such deep fractions also instruct us
as to how increment or decrement operations may be defined, which are instrumental to being able
to support general computation. The dendrite structure of a neuron may therefore also be seen as a
way to impose an integer structure upon the real number sensor values which the action potentials
represent.

4 The Rules of Complexity

While simple relay neurons are sufficient to design an organism that will exhibit very simple rule
based behaviour (swim towards the light and evade danger), a neuron capable of arithmetically
integrating multiple inputs allows the design of an organism with much more complex behaviour.
Neurons capable of integrating multiple inputs and general arithmetic allow for the implementation
in neural circuitry of arbitrary general directives. We shall set four directives:

1. swim toward light at a speed inversely proportional to its brightness
2. at optimal light levels circle slowly
3. at minimal light levels spiral slowly outwards
4. swim away from danger

The first directive is identical to the previous organism with the sensors directly linked to the motors.
The core design of the organism is therefore the same as the previous organism (Figure 1d), and
may therefore be considered backward compatible, with the new directives being in effect plug-ins;
neural circuitry that is added in to supplement or modify the basic functionality. Being able to plug
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in additional neural components is made possible by neurons capable of integrating multiple inputs.
The ability to plug in additional new components with more advanced ability also shows how over
time greater complexity may develop within a simple organism.

The second directive allows the organism to continue moving in conditions of maximum luminance
(with reverse biased sensors at minimum and sensor neurons producing no action potentials). The
ability to move at a minimal speed, as well as allowing a difference in levels of propulsion per side
which leads the organism to circle slowly, maximizes the organism’s ability to detect danger at the
earliest opportunity while at the same time maintaining a safe degree of movement. To allow the
organism to move while all sensors are at zero requires action potentials to be produced that do
not immediately originate from sensor input. This can either be from a specialist clock-like neuron
which always fires at a constant rate or it can be from a subsystem that stores a previous sensor
value. The ability to internally store action potential sequences or to self-generate action potentials is
important in the transition from a system that is simply feed forward to one capable of more general
function. The simplest implementation is to use a modified sensor that simply produces a constant
value irrespective of any measurement (that is, the ability to measure is disabled). This constant is
divided to obtain the correct motor values (to make the organism slowly circle) and then added to the
motor neurons. This input is inhibited when there is any sensor input (using a multiplier so that even
small values inhibit the circuit). With the clock neuron set to produce an action potential sequence at
50% (the maximum and minimum firing rate) the organism can be set to slowly circle by reducing the
clock to 2% for one motor and 1% for the second motor output. This can be calculated by dividing
the clock by 50 and 25 for each of the motors respectively.

The third directive is nominally implementation by the use of a crude on-off non-neuronal circuit
breaker, which conserves energy in conditions of darkness but leaves the organism in a vulnerable
immobile state. Inhibition, which allows for subtraction as well as addition, lets the simple circuit
breaker to be replaced by a neural sub-system that will produce increasingly large negative values
when the sensor potential is too high. These negative values will inhibit the motor neurons. Inhibition
must not, however, reduce the motor neuron’s output to zero. When in complete darkness (with
sensors at maximum membrane potential) the organism must continue to move at a slow steady
continuous pace. If a motor neuron on one side of the organism is inhibited a fraction more than the
motor neuron on the other side, then the organism will circle. Slowly circling may be implemented
by inhibiting high input values with a small difference between the two motors. When using a known
sensor input, the ability to drive the motors to circle accurately derives from the ability to divide the
sensor input value accurately. To circle at 5% and 2.5% of maximum requires division by 20 and
40, respectively. The third directive, however, requires the organism not only to circle but to spiral
outwards, which is a modified circling motion which may be implemented by incrementing the lesser
value over time until it approaches the larger value. This requires the output to the low power motor
to be increased slowly over time until it approaches the output of the high power motor. To implement
this, a timer circuit is needed, which increments a stored value over time. Timing (equivalent to
counting with a constant time interval) and incrementing are important general abilities.

Timing requires a system with the ability to count and counting requires the ability to store a value,
which is then incremented at each time interval. A stored value may be implemented by a circular
circuit of relay neurons, where the output of a neuron is sent back to its own input – indirectly by
a second neuron. Action potential sequences are self-perpetuating on this circular circuit as they
travel over a set of relay neurons linked to form a circle. The circle must be primed until the initial
action potential completes the circuit, at which point the action potential is self-sustaining and the
priming must be inhibited. This circular arrangement allows neural circuits to store information. It
is the building block of a memory store, with each neuron circle being able to store one number of
arbitrary precision. Being able to store information is of fundamental importance for neural circuits
being able to implement complex systems. The input is added to (incremented) by dividing the same
input by an appropriate high integer and adding it. The number of secondary neurons of the circle
determine the increment delay. If integer division for a single neuron is limited (to 120 for example)
then two neurons in sequence may be used (to achieve 14,400). If the delay for an action potential to
circumnavigate the circle is 1 second, then a 1/14,400 increment would produce a 4-hour timer. A one
second delay can be implemented either with a very large circle or with a specialist neuron which
delays action potentials. Relay neurons are under selective pressure to repeat action potentials with
minimal delay. Older variants of neurons might therefore have greater delay, and it is these older
slower neurons that might have found utility in applications where delay is useful.
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The fourth directive is partially implemented by the first directive. The organism will turn away from
any shadow that blocks the light from one of the sensors, but it will fail to follow this up by escaping
from the danger. A shadow indicates danger and the organism should turn away and then swim away
at maximum speed. The simple sensor-motor circuit is therefore insufficient as it will not remember
the danger once the shadow is out of sight and it will continue at its normal pace once it has turned
away from the shadow. The organism cannot know when it has escaped from the danger so the best it
can do is to swim at maximum speed for a fixed period of time. A shadow should therefore trigger a
timer and while the timer is active the motors should be actuated to maximum power. This can be
implemented with a memory circuit, in the same way as directive 3 but with the timer count being
decremented rather than incremented. Figure 1c shows a basic design for the memory circuit and the
sensor subtraction circuit.

5 Defining the Neuron as The Atomic Unit of Calculation

For neurons to collectively implement functions of higher level ability (as exhibited by natural
organisms), the atomic units of the circuitry implementing that functionality should be simple. The
first simplifying assumption is that the underlying neural code is numerical. The second simplifying
assumption is that the core functionality of neurons is to carry out simple numerical division and
addition. Equation 1 shows the output function given k inputs. The integer ratio of ak

bk
is equivalent to

a weight but both ak and bkmust be integers within the division range of the dendrite tree. The integer
bk represents the number of divisions of the dendrite tree and ak is the number of those branches the
input neuron connects to. The output is simply the sum of the input, without any transfer function.

o =

n∑
k=1

ak
bk

Ik (1)

6 Analog and Digital: equivalency when faced with limits on precision

Sensor neurons typically do not signal their state by firing action potentials but rather present a graded
potential to inter-neurons that are linked directly by a gap-junction. The underlying complexity of
this sensor function may be abstracted simply as a sensor measurement, which may be coded as
a real number of arbitrary precision. In the case of photoreceptors there are hard physical limits
on precision. Photoreceptors measure light by transducing the energy from light into an electrical
difference (by means of pumping ions). Light is absorbed by proteins that have evolved to absorb
only within a specific range of wavelengths. When light is absorbed the energy (or force) carried by
the electro-magnetic wave-particle can be measured. The precision of this measurment is limited by
the particle nature of electromagnetic radiation; it can only be absorbed in discrete packets of energy
(called photons). Measuring light can therefore be made no more precise than counting discrete
photons.

In direct sunlight a human foveal cone photoreceptor will receive approximately 2.5×109 photons
(with a simplifying assumptions that all photons have a wavelength of 500nm, that illumination of
the natural environment for humans is 1000 watts per m2, that the surface area of the human fovea is
3mm2 and foveal sensor density is 100,000 sensors per mm2). Assuming that a neuron can fire at
most every 4ms (and that all available photons are accurately transduced), counting photons within
that period of time requires integer numbers that can be coded by 27 bits. If glial cells focus and
direct specific wavelengths and thereby increase the effective sensor surface area by a factor of at
most 10 then this will increase the requirements to 30 bit integers. This value corresponds well with
what we know about colour vision where older standards for colour reproduction require three 8 bit
integers (for a total of 24 bits) whereas newer standards require 10 bit colour (with each pixel being
coded by 30 bits).

7 Neurons and Logic Gates

The neural network of our hypothetical organism does not learn, habituate, recognize or change
its function in any way. Indeed, for our simple hypothetical organism most change to the core of
the neural system is dangerous and will in almost all cases cause it to function incorrectly (that is,
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with poor fitness). As an example, if the relay neurons of a memory circuit to learn to fire together
rather than to fire in sequence then the information stored by the memory sub-circuit would be lost.
If the circuit that carries out the timed increments for the ability to swim in a spiral were to lose its
very small increment this would lead to a failure of the spiral. Neural circuits are inherently very
flexible in that functionality may be incrementally added but the core function must not change.
Indeed, a practical circuit would incorporate error correction to resist change (in most cases, damage)
to core functionality. The neural circuitry is also not self-organizing in any way. It is purely the
implementation of an abstract design, which is the expression of some builder mechanism. Any
mechanism with a general ability to build complex systems would require the design information in
the form of a code from which it will carry out its work. Because the neural system cannot function
before being built, the code that expresses the design of neural circuitry must be external to the neural
system itself. Natural organisms have non-neural means to code design information, but this will be
left to future work to explore.

Almost all conventional abstract models of neurons assume the central dogma that the functionality
of neurons is linked to the action potential; that action potentials are counted and this count may be
modified or weighted in some way depending on where the action potentials orginate from. Neurons
are also assumed to have a central threshold, which may also be seen as a type of weight. There are
many variations of this, such as the leaky bucket threshold count. The feature that unites these models
is the hypothesis that synapses themselves or the dendrites are weighted in some way to moderate the
value of an incoming action potential, and that the degree of moderation can be modified and therefore
is a type of stored value. It is assumed that these stored values are used by neural systems to store
information. The neurons of natural organisms often have a very complex and intricate dendrite (tree
like) structure which hold large numbers of synapses. The structural complexity of these synapses
is often assumed to indicate some higher ability. The many synapses may for example be used to
connect to an array of sensors and by modifying the weights of the synapses the neuron may used as
a kind of detector. Taken to the most extreme, it is sometimes suggested for higher organisms which
have complex visual systems that they have individual neurons that act as grandmother detectors [7].
When such neural systems are simulated, the function of these neurons may be expressed as a search
space comprised of the synpatic weights. What is implicit in such simulations is that these stored
values are addressed. Generally, the threshold and weights are set by training the neuron, which
amounts to an exhaustive search through all possible weights and then a central threshold which
responds best when presented with the stimulus.

Very little consideration is given to the problem of addressing synaptic weights since addressing
appears trivial when neurons are simulated using a Von Neumann machine. This assumption of
addressing ignores the complexity of computation and the history of the development of practical
computation. With a Von Neumann machine each word of memory can be addressed (that is, it can
be read and modified if the address is known). Turing machines provide an alternative model of
computation where the memory store is not addressed. Turing machines can be designed to organize
their memory store so that is can be addressed but this is not a trivial step. A Turing machine has a
store of instructions which are able to systematically modify the memory (the stored information),
but only the current memory location can be directly accessed. All other memory locations can be
accessed only by first locating them by means of a linear search. Neurons on the other hand are much
simpler devices, which in the case of a relay neuron simply fires an action potential on receipt of an
action potential. More complex neurons integrate incoming action potentials in a more complex way,
but their sole ability is to fire an action potential. There can be no specially coded action potential
sequence that modifies a threshold or changes the synaptic weights. It is sometimes suggested
that synaptic weights can be changed by general principles such as ‘neurons that fire together wire
together’ [9]. This is a fundamental error. Systems capable of general computation must have a
facility to store information and be able to systematically read and write that information. If neurons
are unable to modify their weights and thresholds systematically (by use of their action potentials)
then the hypothesis that weights and thresholds are in some way used as a store of information must
be wrong. So too is the view that neurons detect or perceive higher level aspects of the environment.
This paradigm is often expressed implicitly in terms of the neural code preserving an external signal,
with the expectation that given a neural code some external signal may be reconstructed. Individual
neurons do not detect or propagate signals from the environment and they do not detect high level
constructs (such as bugs or grandmothers). This is a category error, conflating the high level abilities
of complex neural systems with the abilities of individual neurons.
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The model of the neuron presented here does not use thresholds and synaptic weights; it does not
store values and is not self-modifying in any way. It is an unchanging unit capable of only very
basic arithmetic; a calculation which is performed on coded information as it is relayed. A neuron
which performs addition and integer multiplication is superficially very similar to a threshold synaptic
weight neuron. This makes it consistent with empirical observations of neural activity. The primary
difference is the role of the complex dendrite structure found in the neurons of many natural organisms.
It is often assumed that dendrite complexity belies some important and complex function. We suggest
the contrary; that function of the complexities of the dendrite structure is very simple – that it is a
complex and ornate solution to the very simple problem of integer division. Neurons branch not
to store increasing amounts of information but to achieve greater precision. It would be predicted
therefore that higher organisms, which have specialist cells with a very high degree of branching
(such as the Purkinje cells, which have upwards of 100,000 branches), need those cells to make
precision calculations and if those cells are degraded this would lead to a degradation of abilities for
which precision calculations are needed.

Using the needs of a simple hypothetical organism to define the neuron and to design simple but
practical neural systems has therefore led us to a simple but effective neural code and a simple neural
model in which the primary function of a neuron is basic arithmetic. We have shown that these simple
atomic units of calculation can be used to design more complex neural circuits such as memory stores
and increment/decrement. These are the fundamental elements necessary for universal computation.
Universal computation also requires the ability to code a set of instructions, to read, write and modify
stored values and to execute a set of coded instructions in sequence. It therefore requires the ability
to abstract the simple fundamental operations. The neural systems of an organism capable of general
computation do not directly express the function of the organism hard-coded in the neural circuitry
but by a more abstract code which use the generic elements of the neural circuitry systematically to
achieve the same thing.

The design of the practical organism using simple neurons shows a noteworthy similarity with the
design of digital circuitry. The fundamental unit of digital circuits is the logic gate, which are the
simplest units capable of arithmetic (binary/boolean arithmetic) and which are usually implemented
using transistors (and other electronic components such as resistors and capacitors). The AND gate
carries out binary addition, but on its own it is insufficient to support general computation. However,
when joined with the NOT gate this leads to a single device capable of universal function (the NAND
gate). The advantage of this is that any digital device no matter how complex can be designed using
just this single atomic unit.

Logic gates are not inherently capable of storing information, but when the output of two NAND
gates are connected to their inputs they are able to maintain their state and this property leads to the
ability to store one bit of information. Information coded by digital circuits is therefore binary, and
all devices capable of calculation and computation designed using digital circuits classed as digital;
in which number are coded using binary digits. The hypothetical organism presented here shows
a potential alternative to digital computation. The values coded using a binary code are inherently
integers; indeed a single binary digit can only code for the integers 0 and 1. A neural spike code
(which codes by distance between spikes) is inherently an analog code which represents sensor
measurements. This suggests, therefore, that natural organisms use an analog model of computation
rather than the digital.

Digital computation using single binary bits is generally not very useful, and therefore the digital
circuitry used to support general computation is commonly organized into words of 32 or 64 bits.
The underlying implementation is less important (indeed NOR gates can as readily be used as NAND
gates) than the abstract design of using the underlying hardware to code numbers and being able
to perform basic mathematical operations on the numbers. Equally, if the underlying function of
neurons is also in the same way simply to code and relay numbers with the ability to perform addition
and integer division then the underlying physical complexities of neural mechanics are removed.
The most important element which would be removed is the central role of the action potential. A
simulation could remove the discontinuity of the action potential and replace it with simple numerical
continuity. A practical system that uses analog numbers is limited in precision to the underlying
mechanics of the system and therefore these numbers can be represented using a digital representation
(provided the number of digits are sufficient). Since a digital circuit with the ability to carry out
division and addition is trivial neural circuitry and digital circuitry may be considered equivalent.
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8 Discussion

Studying the needs of a simple hypothetical organism suggests that the most important functions a
neural network needs are repetition, duplication (addition) and being able to divide by an integer
fraction. A general neuron integrating all three functions into a single unit greatly simplifies neural
network design and allows for complex behaviour to be implemented with very small numbers of
neurons. The proposed neuron does not by itself store information and neither does it have any higher
level ability (such as learning) . It is an unchanging unit capable of only the most basic arithmetic.
Its function is superficially very similar to a conventional artificial threshold synaptic weight model
and this makes it consistent with empirical observations of actual neural activity. The difference is
primarily in formally defining the neural code. The most visible difference is the role the complex
dendrite structure plays. It is often assumed that dendrite complexity must belie some important and
complex function [3, 8, 14]. We suggest the contrary; that the underlying function of what appears to
be very complex dendrite structure is very simple – that it is a complex and ornate solution to the very
simple problem of integer division. Complex branching is not the product of learning, recognition or
storing information but simply a by-product of the need to achieve greater arithmetic precision. An
empirical prediction from this would be that natural organisms, some of which have specialist cells
with a very high degree of branching (such as the Purkinje cells with upwards of 100,000 branches),
use neurons with a complex dendrite structure simply to calculate more precisely.

9 Conclusion

We have used a simplified abstract model of a neuron, which does not rely on any stored information
such as thresholds or synaptic weights, to design the neural circuitry of simple organisms in order
to illustrate utility. Organisms that exhibit useful and complex behaviour may be designed using
very small numbers of the proposed general purpose neuron. The proposed neurons are capable
only of simple arithmetic calculation but they may readily be combined to achieve more complex
functionality. We have demonstrated a network of neurons that implement a memory store and the
increment/decrement functions. Noted is the similarity of the memory store implementation when
compared to a Von Neumann machine implementation using logic gates. We will leave it to further
work to demonstrate conditional branching and to implement the ability to store programs. This is
expected to show that Von Neumann machines and neural networks have a very similar approach to
practical computation: that the core function of both is simple processing of numbers.
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