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Abstract 

The main objective of this work is to study and implement techniques for visual content 

retrieval using relevance feedback. Relevance feedback approaches make use of 

interactive learning in order to modify and adapt system behaviour to user’s desires by 

modelling human subjectivity. They allow a more semantic approach based on user’s 

feedback information, while relying on similarity derived from low-level features. 

An image relevance feedback framework has been implemented based on support 

vector machines as a generalisation method. The algorithm for support vector machines 

solves a convex optimisation problem and the algorithm has been tailored to the 

relevance feedback scenario.  

MPEG-7 standard descriptors and their recommended distance functions have been 

used to represent low-level visual features as well as several additional descriptors. A 

multi-feature scenario has been developed in an effort to represent visual content as 

close as possible to human perceptual experience. A model for feature combination and 

not just concatenation has been developed and a novel kernel for adaptive similarity 

matching in support vector machines has been proposed. The new kernel models multi-

feature space guaranteeing convergence of the support vector optimisation problem. 

To address the problem of visual content representations, a novel approach of building 

descriptors based on image blocks, their low-level features and their spatial correlation 

has been proposed as a part of the relevance feedback framework. In accordance to this 

an accompanying kernel on sets has been proposed that handles both multi-feature space 

as well as the local spatial information among image blocks. 

The relevance feedback module has been applied to a framework for image selection in 

concept learning. It combines unsupervised learning to organize images based on low-

level similarity, and reinforcement learning based on relevance feedback, to refine the 

classifier model. This research is a part of the EU IST aceMedia project and the 

described relevance feedback module has been integrated in the project framework. 
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CHAPTER 1 :  Introduction 

1.1. Problem and Motivation 

In modern and continuously growing media databases, the inability of accessing 

accurate and desired content can be as limiting as the lack of content itself. Research in 

information retrieval whether based on textual description or low-level content is 

aiming at overcoming the drawbacks of machine limited behaviour and incorporating 

human understanding into the complex equation of machine responses. 

Unlike textual information, which is human defined and precise in meaning, a picture, 

or audio-video content has a hidden component of creative reasoning of the human 

brain. This gives the content an overall shape and meaning far beyond capabilities of 

any language-based representation. In the last decades, the research in information 

retrieval has moved from strictly text based retrieval systems to multimedia content 

databases fusing information together. Throughout recent years, the idea of simulating 

human understanding has been closely related to iterative feedback. This approach 

incorporates the obtained knowledge into a learning approach that could eventually be 

able to “think” and “behave” as a human. In this thesis the emphasis is on still image 

databases and contributions in the domain of interactive retrieval using visual content 

and user provided feedback.  

Content-based image retrieval (CBIR) uses low-level features such as colour, shape and 

texture to represent visual content and automatically index image databases. However, 

the search for a particular semantic content based on semantic user defined 
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commonalities can be relatively uncorrelated with low-level feature similarity. A human 

user usually searches for examples of content with similar semantic meaning however 

similarity in huge databases can only be provided on feature level automatically 

extracted from the content. This leads to a major problem, when searching for relevant 

content, which can be described with both sensory and semantic gap. The sensory gap is 

a difference in information between objects in the real world and their recorded 

descriptions as perceived by recording devices. On the other hand, the semantic gap is 

the lack of consistency in information extracted from the visual content and the user 

defined interpretation of the same content. In order to bridge these gaps, low-level 

features need to be consistent representatives of common concepts in the database. They 

should be invariant to occlusion, illuminationn, noise, clutter and viewpoint. However, 

at the same time these features should be discriminative enough to distinguish a variety 

of concepts.  

To solve this problem CBIR is coupled with annotations, taxonomies, ontology and 

especially with user relevance feedback, to emphasize hidden associations between 

high-level semantic concepts and low-level features extracted from data observations. 

1.2. Research Objectives 

As means of achieving a step closer to bridging the gap between human and machine 

driven reasoning, iterative short term and low-effort relevance feedback, has been 

presented as an unavoidable step. This thesis focuses on CBIR with user defined 

relevance feedback. Specifically, the following objectives were considered: 

• To investigate low-level visual feature extraction and the importance of these 

features in CBIR systems with relevance feedback. 

• To analyze and to select learning approaches for relevance feedback. 

• To develop an approach for effective low-level feature combination in conjunction 

with learning strategies, and the possibility of integrating the overall feature space 

into the learning method. 

• To incorporate localized image information into the learning approach as well as 

into the low-level similarity. 
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• To suggest possible application scenarios for effective use of relevance feedback 

(RF) approaches in a multi-feature space. 

1.3. Contribution of the Thesis 

Following the guidelines given above a kernel based relevance feedback approach in 

CBIR has been developed. All necessary steps in enabling an effective RF for natural 

images have been investigated and novelty introduced in a number of appropriate 

stages: 

• Low-level features were analysed and a discriminative and descriptive low-level 

feature combination was proposed. This combination is able to effectively capture 

low-level representations of natural images for a retrieval scenario. 

• An adaptive convolution kernel dealing with multi-feature spaces and 

guaranteeing convergence of the SVM optimisation problem has been introduced.  

• A set kernel coupled with clustering approaches, defined in structured space 

has been proposed. It encloses both multi-feature and spatial information about 

localized image blocks enabling a higher transparency between low-level image 

features and semantic concepts. 

• Application to classification for improved image selection in concept learning has 

also been introduced. It combines unsupervised learning to organize images based on 

low-level similarity, and reinforcement learning based on relevance feedback, to 

refine the classifier model.  

The research described in the thesis and improvements of conventional approaches have 

been presented in a number of author’s publications, which are given at the end of this 

thesis. 

This research has also contributed to the EU IST “aceMedia” project and an 

accompanying relevance feedback module has been integrated and evaluated in the 

project framework. 

 As final remark, this thesis is dealing with still image databases, while video databases 

have been considered in correspondence with key-frame extraction (Djordjevic et al. 

2005). 
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1.4. Structure of the Thesis 

In this thesis the necessary elements to understand and develop an effective relevance 

feedback approach in CBIR are gradually introduced.  

Chapter 2 contains description of feature extraction methods, and choice of visual 

features used to build the multi-feature space as well as similarity measures. It also 

introduces the Multimedia Content Description Interface, MPEG-7, and gives an 

evaluation for multi-feature spaces in a content based retrieval and browsing scenario. 

Chapter 3 gives a summary of the existent retrieval methods along with state-of-the-art 

approaches for relevance feedback. The emphasis is put on the description of support 

vector machines (SVMs) used for learning user preferences, which are introduced 

through interactive relevance feedback. 

Chapter 4 introduces a new kernel for multi-feature spaces. It analyses the necessary 

mathematical properties of kernels to enable a convex SVM optimization problem and 

how the proposed kernel fits into these requirements. 

Chapter 5 deals with the complex problem of structured descriptor spaces, that connects 

both low-level and spatial information of localized image blocks. A kernel on sets is 

introduced. This kernel is based on local kernels defined on local image parts in the 

multi-feature space, as investigated in the previous chapter. 

Chapter 6 describes two application frameworks for the designed method. The first one 

couples clustering methods and supervised relevance feedback to improve classifier 

performances. The second application describes the role of the developed relevance 

feedback module within the “aceMedia” project. 

Chapter 7 gives a discussion of the introduced contributions and concluding remarks.  

Complementary explanations are organized into three appendixes. Appendix A shows a 

visual overview of used ground truth image databases. Appendix B introduces several 

mathematical prerequisites needed for kernel analysis. Appendix C presents a detailed 

algorithm and the necessary steps used for solving and implementation of the convex 

SVM optimization problem.  
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CHAPTER 2 : Low-level Visual Features, 

and Reliability of Similarity Matching  

2.1. Introduction 

In this chapter several extensively used methods for visual content descriptions are 

introduced. Both generic and descriptor specific, similarity measures between visual 

features are considered. The connection between image descriptors, and similarity 

measures on one side and the quality of retrieved set in a simple similarity matching 

CBIR system on the other side, is analyzed. Retrieval performances and reliability of 

the considered descriptors are further evaluated. 

2.2. Low-Level Features 

Low-level feature representations aim at capturing low-level visual content similarities. 

However, these representations are limited to content and cannot infer complex 

semantic meaning. In an effort to deal with the sensory gap low-level features need to 

be invariant to distortions in the recordings of objects. Nevertheless, in order to deal 

with the semantic gap image features also need to be invariant to different instances of 

the same semantic concept and at the same time, they have to be discriminative enough 

to be able to differentiate among various concepts.  

Image databases either relate to a specific domain or represent a broad variety in content 

encountered in real world applications. Therefore, a wide variety of approaches and 

searching scenarios can be encountered. As a consequence the ratio between invariance 
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and discrimination of features cannot be generically defined. Nevertheless some 

relations can be inferred from the scenario, the type of database and the user 

requirements. Usually a particular semantic meaning for content can be inferred with a 

highly representative feature or combination of features. Note that in the rest of the 

thesis the term descriptor is used to identify a specific syntactic representation of visual 

feature. 

2.2.1 Colour spaces and Colour descriptors 

Colour is a very important low-level feature and one of the strongest descriptors for 

image retrieval. Various colour-based representations have been proposed in the past. 

However, before defining a colour feature an appropriate colour space has to be chosen. 

Colour spaces 

In general image pixels can be represented with a three dimensional colour space model. 

Depending on the application Gevers (2001) distinguished various colour space models 

for different applications. Though every space model has its advantages, uniformity is 

the main required characteristic in image retrieval systems. Hence, the colour space 

needs to be perceptually uniform. This means that the distances between two colours 

that are equal in the introduced colour space should also imply perceptual equality 

observed by humans. In general, the chosen colour system for feature representation 

needs to be independent from the underlying imaging device. The computational 

transform, from the RGB  space in which images are captured to the considered space, 

should be linear to avoid instability towards noise. Invariance towards a number of 

changes is also required for image retrieval such as illumination, occlusion, viewpoint, 

object pose. Hence, when there is little variation in perception of an object or a scene, 

the RGB colour space is a good choice. A further improvement of colour spaces 

considers ∗∗∗ baL space with a relative perceptual uniformity. The HSV  colour space 

considers human intuition, and addresses three of the most important aspects in the 

perception of color: hue, saturation and value. The hue and saturation components are 

based on the way human eye perceives colour. Hue corresponds to different colours 

while saturation varies from unsaturated (shades of grey) to fully saturated (no white 

component, intense colour). Finally, value or brightness corresponds to colours 

becoming increasingly brighter.  
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In this section several commonly used colour descriptors are reported. These were 

proposed in recent years for image retrieval applications by a number of researchers 

(Gevers and Stokman 2003). They include colour histograms, colour moments, colour 

coherency vector, colour correlograms etc. 

Colour Histogram 

 The research in the area of colour histogram representation has been active ever since 

Swan and Ballard (1991) introduced colour histograms. As mentioned before, an image 

representation is highly dependant on the application, the colour space used as well as 

the quantisation level (see Figure 2.1). Finer quantisation results in better colour 

representation however, the dimensionality of the representative feature is increased. 

The colour histogram used in this work is a global colour histogram in the HSV space. 

It is generated by counting the frequency of pixels with colour values that fall into 

specific colour ranges (bins). The bins are defined based on the colour space and the 

number of quantisation levels. Colour histograms are robust to translation and rotation 

of images with slight differences in values when changes in scale, occlusion or viewing 

angle are introduced. Though histograms are good representatives of colour 

distributions across the image, they lack spatial colour information. To address this 

issue local colour descriptors, such as colour layout or region-based descriptors have 

been developed. 

Colour Moments  

Colour moments represent a compact feature based on statistical first, second and third 

order moments for colour components of pixels in an image. These features are usually 

defined in the ∗∗∗ baL  and ∗∗∗ vuL colour spaces, with maximally three values for each of 

the three colour components. 

Colour Coherence Vector 

The colour coherence vector incorporates spatial information into the colour histogram. 

Each bin is replaced by a two dimensional bin with values representing the number of 

coherent or incoherent pixels belonging to that bin. A pixel is considered coherent if it 

belongs to a large region with uniform colour, otherwise it is incoherent. Similarly to 
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the case of generalized colour histograms, best performances are achieved for the HSV 

space.  

Colour Correlogram 

Colour correlogram was proposed to capture both colour distribution and the spatial 

correlation of pairs of colours. It consists of a table indexed by three-dimensional 

entries ( , , )i j k  that specify the probability of a pixel with colour j  being at distance k  

from a pixel with colour i . If all the possible combinations of color pairs are considered 

the size of the colour correlogram is very large. Hence, a simplified version that 

considers only correlation between identical colours, called the colour autocorrelogram, 

is often used.  

   

 

Figure 2.1: Quality of variously quantized images, with different number of histogram 
bins (top left to bottom right): the original, image quantized into eight, four and two 

bins. 

2.2.2 Texture Descriptors  

Texture is commonly identified as visual repeating patterns of varying intensity. It is a 

function of the spatial variation in pixel intensities and has been the subject of many 
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studies. There are two main perspectives in defining texture: human and computer 

vision (Tuceryan and Jain 1988). In the human vision perspective various texture 

descriptions were evaluated against the human visual system. It has been established 

that second order statistics define a likelihood of observing a pair of gray values in an 

image at a random location and orientation. Hence, textons are defined as texture pairs 

with identical second-order statistics and they are used in texture discrimination. Other 

studies have proposed that the brain performs a multi-channel, frequency and 

orientation analysis of the visual image. They suggested that the visual system 

decomposes the image into filtered images of various frequencies and orientations. this 

was proved by De Valois et al. (1982) who determined that the response of cells in the 

visual cortex is a sinusoidal grating of various frequencies and orientations. Hence this 

has been the motivation for vision researchers to apply multi-channel filtering 

approaches to texture analysis.  

Tamura Texture Feature 

The Tamura texture features were designed in accordance with philological studies of 

human visual perception of texture (Tamura et al., 1978). These features include: 

coarseness, contrast, directionality, linelikeness, regularity, and roughness. The fist 

three components were used in early image retrieval systems as QBIC (Flickner et al., 

1995) and Photobook (Pentland et al., 1996). Coarseness is a measure of granularity of 

texture, and it is connected with scale and repetition of patterns in an image. Contrast 

captures the dynamic range of grey levels and polarization of black and white colour 

distributions. Finally, directionality is a global feature of an image which tries to 

identify the total degree of directionality. 

Grey Level Co-occurrence Matrix 

The spatial grey level co-occurrence matrix (GLCM) estimates image properties related 

to second-order statistics. GLCM is a symmetric matrix of dimensions equal to the 

number of grey levels N , present in an image. Each element represents the frequency at 

which two pixels, separated by a certain displacement vector, occur in the image 

(Haralick 1979). Pd  denotes a GLCM with displacement vector ( , )dx dy=d , where dx  

and dy  are the distances for each coordinate. The entry ),( ji  for the matrix Pd  
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represents the number of occurrences of the grey levels pairs i  and j  with the 

displacement vector d . 

{ }( , ) (( , ), ( , )) : ( , ) , ( , )P i j x y p q I x y i I p q j= = =d . 

Where ( , )I ⋅ ⋅  is grey level intensity at specific coordinates, ( , ) ( , )p q x dx y dy= + +  and 

⋅  denotes the cardinality of the set. The GLCM reveals certain properties about the 

spatial distribution of the grey levels for example if most of the entries in the co-

occurrence matrix are concentrated along the diagonals, then the texture is coarse with 

respect to the displacement vector. A total of 14 scalar quantities have been preposed 

for summarizing the information contained in a co-occurrence matrix. However, 

typically only a subset of these is used. In Table 2.1 four features are considered: 

energy, entropy, contrast and homogeneity. 

Table 2.1: Four texture features calculated from the grey level co-occurrence matrix. 

Texture Feature Formula 

Energy 
2( , )

i j
P i j∑∑ d  

Entropy ( , ) log ( , )
i j

P i j P i j− ⋅∑∑ d d  

Contrast 
2( ) ( , )

i j
i j P i j−∑∑ d  

Homogeneity 2
( , )

1 ( )i j

P i j
i j+ −

∑∑ d  

The energy feature has a larger value when the co-occurrence frequencies are 

concentrated only at few locations in the matrix. This can happen along the diagonal for 

an image with constant grey level values or off- diagonal for structured images. A noisy 

image with random changes in grey levels will have a low energy value. The entropy 

feature is larger in images with evenly distributed values in the co-occurrence matrix; 

Therefore in noisy images the entropy is large. The contrast feature is larger for a co-

occurrence matrix with higher off-diagonal values with varying intensity. Finally, the 

homogeneity feature is large for an image with more constant grey level patches, that is 

for co-occurrence matrix with large diagonal values.  
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Gabor Filter Feature  

Gabor filters (GF) are very often used to extract texture, since they enable filtering in 

the spatial and frequency domain. Newsam and Kamath (2005) suggested use of Gabor 

filters to model the receptive fields of cells in the visual cortex for texture processing. 

The Gabor transform is a set of shift invariant directional filters. Since it produces much 

more coefficients than there are pixels in an image, it is redundant and hence, 

computationally costly. To overcome this disadvantage, Manjunath and Ma (1996) 

developed an effective feature representation based on first and second moments of 

transformed coefficients. An attractive mathematical property of Gabor functions is that 

they minimize the joint uncertainty in space and frequency. A two dimensional Gabor 

filter ),( yxg  corresponds to a sinusoidal wave of a certain frequency and orientation 

modelled with a Gaussian envelop: 

2 2

2 2
1 1( , ) exp 2

2 2x y x y

x yg x y jWxπ
πσ σ σ σ

⎢ ⎥⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟= − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, 

where ,x yσ σ  are sizes of the Gaussian envelope in yx, directions, respectively. Gabor 

filters are frequency and orientation selective filters, with a corresponding Fourier 

transform ),( vuG : 

2 2

2 2
1 ( )( , ) exp
2 u v

u W vG u v
σ σ

⎧ ⎫⎡ ⎤−⎪ ⎪= − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

Where 1 2u xσ πσ= , 1 2v yσ πσ=  and W denotes a higher center frequency of interest 

hU . A class of Gabor filters is built by dilations and translations of the function 

),( yxg : 

( , ) ( , ), 1, 0,1,..., 1, 0,1,..., 1m
mng x y a g x y a m S n R− ′ ′= > = − = −  

( cos sin ), ( sin cos )m mx a x y y a x yθ θ θ θ− −′ ′= + = − +  and n
R
πθ = . 

Where nm,  are integers representing scale and orientation and RS,  are total number of 

scales and orientations in the filter bank. The factor ma−  ensures that the energy is 

independent of scale m . The non-orthogonal property of Gabor filters introduces 

redundant information. In a design strategy for filters the redundancy is reduced by 

ensuring that the half-peak magnitude support of the filter responses touches each other 
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in the frequency spectrum (see Figure 2.2). Let ,l hU U be central lower and upper 

frequencies of interest. The design strategy models the values for a , uσ and vσ  as 

functions of ,l hU U , scale and orientation. The Gabor transform values of an image are 

defined as: 

1 1 1 1( , ) ( , ) ( , )mn mnW x y I x y g x x y y dx dy∗= − −∫  

Where ( , )I x y  denotes grey value in an image, and ( ∗ ) denotes a complex conjugate. 

Mean value mnµ  and standard deviation mnσ  of transformed coefficients are used to 

construct the feature vector (Manjunath and Ma, 1996): 

00 00 01 01 1 1 1 1[ ... ]S R S Rµ σ µ σ µ σ− − − −=x                             (2.1) 

 

Figure 2.2: Magnitude of Gabor filter responses for scale S=4 and total number of 
orientations R=6 (left), R=12 (right); 

2.2.3 Shape Descriptors 

In order to enable extraction of shape features, in many applications a pre-processing 

step of object segmentation is required. Two main categories for shape features have 

been defined in literature: contour-based and region-based. 

 Contour-based shape features describe objects by using only information along the 

object boundary, e.g. Fourier descriptor for shape (Persoon and Fu, 1977), curvature 

scale-space representation of a contour (Mokhtarian et al., 1996).  

Region-based shape descriptors characterize spatial distribution of both boundary and 

interior pixels. They can describe complex objects consisting of multiple disconnected 

regions as well as simple objects with or without holes.  

Within the MPEG-7 standard a descriptor based on angular radial transform (ART) is 

used to decompose an image into a set of orthogonal two-dimensional complex basis 

functions (Manjunath et al., 2003). The feature vector is composed of magnitudes of the 
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complex ART coefficients for a number of angular and radial basis functions. This 

feature is scale and orientation invariant. Other region based approaches include shape 

descriptors based on geometrical moments. A comprehensive overview of shape 

features is reported by Gevers and Stokman (2003). 

2.3. Similarity Measures 

Comparing feature sets based on similarity function allows meaningful interpretation of 

low-level numerical features. This is achieved by providing some level of correlation 

between low-level similarity and human defined perceptual similarity. In CBIR systems 

the retrieval result is a list of images ordered by increasing dissimilarity to the query 

image or images. Retrieval performance is not only influenced by quality of the content 

representations but also by different similarity measures. A number of similarity 

measures for image retrieval based on empirical estimates of the distribution of features 

have been developed in recent years.  

In this section, a brief review of the distance measures is given through use of the 

following notation. Let X  be a feature space endowed with a similarity measure d . 

Observe that d  is a distance function, in case d  is a metric the feature space 

( , )X d becomes a metric space (see Appendix B, Definition B.1). Let ix  be a i -th 

vector element of X  with dimension N . The dimension of the feature space depends 

on the space itself NX ≡ \ . A feature vector is i X∈x , ,1 ,2 ,[ , ,..., ]i i i i Nx x x=x . 

Minkowski form distances 

Assuming independence of feature vectors, the Minkowski form distance pL  for a 

discrete n -dimension feature space , N
i j ∈x x \ , is defined as:  

 
1/

, ,
1

( , )
pN p

i j i r j r
r

d x x
=

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠
∑x x                                       (2.2) 

For 1p = , the norm in (2.2) represents the Manhattan distance ( 1L distance) and for 

2p =  it represents the well known Euclidian distance ( 2L  distance). For p = ∞ , the 

special case of the Minkowski distance leads to the Chebychev distance: 
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1/

, , , ,
{1,..., } 1

( , ) max lim
pN p

i j i r j r i r j rpr N r
d x x x x

→∞∈ =

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑x x                        (2.3) 

A number of CBIR systems such as MARS (Rui et al., 1997), NeTra (Ma and 

Manjunath, 1997), Blobworld (Carson et al., 2002) have used Minkowski form distance 

as the similarity measure. 

Histogram Intersection 

 Swan and Ballard (1991) proposed histogram intersection (HI) distance for colour 

image retrieval. This distance metric is a version of the 1L  metric that deals with partial 

matches. The histogram intersection distance of two N -dimensional histograms ix  and 

jx , is defined as: 

, ,
0

, ,
0

min( , )
( , ) 1

max( , )

N

i r j r
r

i j N

i r j r
r

x x
d

x x

=

=

= −
∑

∑
x x                                              (2.4) 

Colours which are not present in one of the histograms do not contribute to the 

intersection value, consequently background colours do not influence to the overall 

distance. In case two histograms are identical the intersection is 1 and distance 0. 

Weighted-Mean-Variance  

Manjunath and Ma (1996) proposed this empirical distance for Gabor filter features 

(2.1). Empirically, the values for means mnµ  and standard deviation mnσ of transformed 

coefficients in an image of size m n×  are normalized by a standard deviation ( )σ ⋅ of 

appropriate values.  

( ) ( ) ( ) ( )
( , )

( ) ( )
mn i mn j mn i mn j

i j
mn mnm n

x x x x
d

µ µ σ σ
σ µ σ σ
− −

= +∑∑x x .                 (2.5)  

Quadratic form distance 

Very often, feature components are not independent with different levels of  importants. 

To integrate this into the distance function the quadratic distance is defined as: 
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1/ 2( , ) (( ) ( ))T
i j i j i jd A= − −x x x x x x                                (2.6) 

Where [ ]ijA a=  is a cross-correlation matrix, denoting similarity between the i -th and 

j -th feature components. This metric has been used for colour histogram retrieval, 

since it incorporates cross-bin similarity and leads to better results than simple 

Minkowski or histogram intersection distance.  

Mahalanobis distance 

The Mahalanobis distance takes in account various levels of correlation between 

components of feature vectors (Wilson and Martnez, 1997): 

1 1/ 2( , ) (( ) ( ))T
i j i j i jd C−= − −x x x x x x                                      (2.7) 

Where C  is the covariance matrix of feature elements. The matrix entry at postion 

),( ji  corresponds to cross-covariance value between two n -dimensional feature 

vectors  ( , ) [( [ ]) ( [ ])]T
i i j jCov i j E E E= − −x x x x  where E  is the expected value. 

Kullback-Leibler Divergence and Jeffrey-Divergence  

The Kullback-Leibler (KL) divergence measures the difference between two probability 

distributions ( )ip x and ( )jq x  for feature vectors ,i jx x . In image retrieval, histograms 

are frequently used to obtain nonparametric estimators of empirical feature 

distributions. The histogram value ( , )if r x  corresponds to the number of image pixels 

in bin r  for feature ix . 

( ) ( , )( , ) ( ) log ( , ) log
( ) ( , )

i i
KL i j i ir

j j

p f rd p f r
q f r

= =∑x xx x x x
x x

.                       (2.8) 

This distance is not a metric as it is not symmetric and does not satisfy the triangle 

inequality. Hence, its symmetric version the Jeffrey-divergence (JD) is often used: 

( , )( , )( , ) ( , ) log ( , ) logˆ ˆ( ) ( )
ji

JD i j i jr

f rf rd f r f r
f r f r

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

xxx x x x , 

where 
( , ) ( , )ˆ ( )

2
i jf r f r

f r
+

=
x x

 is the mean histogram (Rubner et al., 2001).Similarly 

another frequently used statistical distances is the Chi-square distance (Michalski et al., 

1981) 
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Earth Mover's Distance  

The Earth Mover's Distance (EMD) is a flexible method for calculating similarity 

between multidimensional distributions in a feature space (Rubner et al., 1998). EMD 

defines the minimum effort to be made for transferring one feature signature to another. 

It represents a transportation problem that can be solved by linear optimisation 

algorithms. Given two distributions, one can be interpreted as the mass of “earth” 

spread in space and the other as collection of “holes” in the same space. The EMD gives 

a measure of least amount of work needed to transfer the earth into the holes. For two 

feature signatures 
, ,, ,{( , )}, {( , )}, 1,.., , 1,..,

i r j si i r j j sw w r m s n= = = =x xx x x x , the feature 

representatives and weights are denoted as , ,,i r j sx x and 
, ,

,
i r j s

w wx x , respectively. In 

case of feature signatures representing histograms the weights are histogram bin values. 

The cost of moving a unit of a single feature (“earth”) representative in the feature space 

is defined with some ground distance rsd  (e.g., 2L  distance). In this case the distance 

between two signatures is the sum of minimal costs needed to move individual features: 

,

,

( , )
rs rsr s

EMD i j
rsr s

g d
d

g
=
∑
∑

x x  ,                                          (2.9) 

Where rsd is the ground distance between the r -th and s -th feature representative of 

feature vectors ix  and jx , respectively. The optimal flow 0rsg ≥  between two features 

is defined such that the total cost , rs rsr s g d∑  is minimized, under constraints: 

, ,

, ,,

, ,

min( , ).
i r j s

i r j s

rs rss r

rsr s r s

g w g w

g w w

≤ ≤

=

∑ ∑
∑ ∑ ∑

x x

x x

 

The fist constraint limits the amount of “earth” that could be transferred from ix  to jx  

to its weight. The second constraint limits the amount of “earth” that could be 

transferred into the holes, represented with feature jx . The last constraint defines the 

total flow, and maximizes the amount of “earth” to be moved. The total flow is also 

used as a normalisation factor in (2.9), so that matching of parts with different total 

flows could be done. EMD can be applied to the more general variable-size features that 

are present,  for instance,  in images segmented into different number of regions.  
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Aksoy and Haralick (2000) assume two models of similarity measures: probabilistic and 

geometric. The probabilistic similarity measure is defined as the likelihood of ratio for 

two conditional probabilities. The probability that a particular distance between two 

feature vectors occurs when images belong to the relevant class, and accordingly the 

same probability when images belong to the irrelevant class. To estimate the conditional 

distributions, multivariate normal distribution or less restrictive fitted distributions were 

used. Results show that 1L  distance generally performs better than 2L  in a retrieval 

scenario, and that metrics taking into consideration sample distribution perform better 

than purely geometric measures.  

Li et al. (2003) defined a perceptual dissimilarity function based on human perceptual 

similarity. Though not a metric, this distance finds the dissimilarity between two vectors 

based on vectors of reduced dimensionality. This is achieved by keeping only a certain 

number of the smallest absolute differences among feature vector components. 

Improved performance were also shown over the fractional measure as suggested by 

Aggarwal et al. ( 2001), this measure is based on Minkowski distance for parameter 

values 0 1p< < . 

Rubner et al. (2001) present quantitative performance evaluations for a variety of 

dissimilarity measure presented in this section and different scenarios such as 

classification, image retrieval, and segmentation. Comprehensive overviews of existing 

similarity measure can also be found in Santini and Jain (1999) and Long et al. (2002). 

2.4. The MPEG-7 Framework  

The MPEG-7 Standard is defined as standard multimedia content description interface 

offering a set of audio-visual descriptions in an effort to provide standardized tools for 

describing multimedia content (Martinez, 2001; Manjunath et al., 2001). In order to 

provide an efficient and human compliant visual content representation, semantic high-

level description of content is needed. The main initiative for standardisation of image 

descriptions originated from the Moving Picture Expert Group (MPEG) that developed 

the MPEG-7 standard. Chang et al. (2001) stated that the main goal of MPEG-7 is to 

enable interoperability among systems and applications used in generation, 

management, distribution and consumption of audio-visual content. 
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MPEG-7 has a number of normative elements, including audio–visual Descriptors, 

Description Schemes and Description Definition Language (Sikora, 2001). The 

Description Definition Language is a standardized language for the definition of 

additional Descriptors and Description Schemes. Descriptors define syntax and 

semantics of features for audio-visual content with different levels of abstraction. They 

may include features of low-level abstraction such as colour, texture, shape, motion or 

high-level abstractions such as events, concepts etc. Descriptor representations, as 

definitions of low-level content characteristics, belong to the normative part of the 

MPEG-7. Though extraction of these descriptors and similarity matching is not 

normative, a detailed description of the recommended methods for extracting and 

matching are presented in the visual XM document (MPEG, 2001) as a non-normative 

part of the MPEG-7 standard. Low-level characters of image content are the basis for 

generating visual descriptors in the MPEG-7 standard. Several commonly used basic 

visual MPEG-7 descriptors are given in Table 2.2.  

Table 2.2: Basic MPEG-7 visual descriptors for still image characterisation. 

Colour Texture Shape 

Colour Layout 

Scalable Colour 

Colour Structure 

Dominant Colour

Texture Browsing 

Homogeneous Texture

Edge Histogram 

 

Contour Shape 

Region Shape 

 

 

In several approaches, statistical properties of the MPEG-7 descriptors and their 

performances with different metrics were analysed. Eidenberger (2003) investigated 

statistical properties of MPEG-7 descriptors such as redundancies, sensitivity to changes 

in content and completeness (overall coverage of content). However, not all of visual 

media objects can be fully captured by MPEG-7 descriptors. Therefore it was suggested 

that additional descriptors to MPEG-7 ones should be used for content-based retrieval 

and browsing applications. Ojala et al. (2002) compared MPEG-7 colour descriptors 

with colour autocorrelogram features and obtained the best performances  for MPEG-7 

colour structure descriptor. In a similar manner Eidenberger (2004) also tested MPEG-7 

descriptors with their recommended distances and with several other measures in line 
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with human psychological factors. He showed that MPEG-7 recommended distances, 

specified for retrieval and browsing scenarios give in general better performances. 

Hence, when using any MPEG-7 descriptor in this thesis the appropriate distance 

exploiting syntactical meaning of the descriptor is used. The descriptors used for 

experiments in this thesis are presented in more details in the following subsection. 

2.4.1 Colour and Texture Descriptors 

The following descriptors are a part of the visual descriptors in the MPEG-7 Standard, 

they are designed for specific retrieval and browsing purposes. These descriptors 

represent variations of classical features described in section 2.2.1. Since they are part 

of the set of descriptors used in this thesis, they are presented in more details.  

Accompanying similarity measures tuned to the particular implementation of the 

descriptor within the MPEG-7 standard are also presented. 

Colour Layout Descriptor  

 Colour Layout Descriptor (CLD) is a compact descriptor designed to capture the 

representative colours in an image or an arbitrary-shaped region (Manjunath et al., 

2003). Even though, it is derived from global colour histograms, it also incorporates a 

number of localized histograms. Every image is partitioned into 8x8 blocks to achieve 

resolution and scale invariance. Average colour of each block is calculated and the 

discrete cosine transform (DCT) applied on this set of colours. For each of the three 

components in YCrCb colour space 64 coefficients are obtained. The coefficients are 

scanned and only the first few are non-linearly quantized. Scalable representation of the 

descriptor is enabled by controlling the number of coefficients. The number of 

coefficients is chosen from the following set {3, 6, 10, 15, 21, 28, 64}. This descriptor 

can be presented with the following vector: 

{ , , }=x DY DCr DCb                                          (2.10) 

with each sub vector representing coefficients of a particular colour component from the 

YCrCb colour space. For the CLD the MPEG-7 standard recommended a similarity 

measure which is a weighted version of the Euclidian 2L distance (2.2) : 



User Relevance Feedback, Search and Retrieval of Visual Content 
 

 33

2
, ,

2 2
, , , ,
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cld i j yk i k j k
k

rk i k j k bk i k j k
k k

d DY DY

DCr DCr DCb DCb

ω

ω ω

= − +

− + −

∑

∑ ∑

x x

             (2.11) 

This is not a very complex descriptor and as a consequence the speed of extracting is 

rather high. The weights of DCT coefficients for each component are designed to better 

simulate human visual system, with larger weight for lower frequencies. 

Colour Structure Descriptor 

 The colour structure descriptor (CSD) describes colour distribution and local colour 

structure in an image. This descriptor is constructed by scanning a colour quantized 

image with 8x8 structure window and counting the number of times a particular colour 

appears in the structuring window. A colour histogram of 256 bins is then generated in 

Hue-Max-Min-Diff (HMMD) colour space defined by MPEG-7 standard. Additional 

bin unification may be necessary in case the number of desired bins is less that 256. 

This descriptor represents a one-dimensional array of eight bit quantized values: 

{ }( ), 1,...,sh m m M= ∈x                                       (2.12) 

h denotes a histogram, M  can take values 256, 128, 64 and 32, and s  is the scale of the 

structuring window (Manjunath et al., 2003). CSD is a generalized case of global colour 

histogram since it reduces to it when structure window of size 1x1 is used. The distance 

metric recommended for CSD is a normalized version of Manhattan 1L distance (2.2). 

Dominant Colour Descriptor  

 The dominant colour descriptor (DCD) specifies a set of representative colours in an 

image or a region. Colours are clustered into a small number of representative colours 

and then quantized. Since the number of clusters varies depending on the image content, 

the dimensionality of the descriptor is not fixed. The feature vector can be presented 

with a number of optional coefficients (Manjunath et al., 2003). It consists of sets of 

elements describing each dominant colour with the overall dimension of the feature 

vector depending on the image content itself. The feature vector is made up of 4-touples 

of elements:  

, ,{( , )}i i r i rx=x c , 1,..., ( )ir N= x ,                           (2.13) 
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where ,i rc  is the r -th 3-dimensional colour component in RGB colour system, ,i rx  is 

the percentage of pixels that have corresponding colour values for the r -th dominant 

colour. Notice that this is an example of a feature space with variable dimension and the 

similarity measure is not a metric since ( , )dcd i id x x  is not necessarily zero. That is, this 

feature space is not a conventional vector or even metric space. Furthermore, the 

dimension of each feature ( )iN x  is variable, which makes this feature space more 

difficult to handle. The distance measure for the DCD is the quadratic form distance 

(2.6): 

1 2( )( )
2 2

, , , ,
1 1

( , ) ( 2 )
ji NN

dcd i j i r rr j r ss i r j s rs
r s

d x a x a x x a
= =

⎛ ⎞
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠
∑ ∑

xx
x x .           (2.14) 

Here, rsa  is the similarity coefficient between two colours 1 /rs r s maxa d= − −c c  for 

r s dT− ≤c c , otherwise zero. dT  is the maximal distance for the two colours to be 

considered similar and max dd Tα= ⋅ . As recommended in MPEG-7 standard, dT  takes 

values between 10 and 20 and α  between 1.0 and 1.4  (Manjunath et al. 2003). 

Edge Histogram Descriptor 

 The Edge Histogram Descriptor (EHD) describes local edge distribution of an image. 

After dividing an image into 4x4 sub-images and detection of edges, local edge 

histograms are calculated. Five types of edges are defined (horizontal, vertical, diagonal 

45 degrees, diagonal 135 degrees and non-directional). A histogram with 80 bins is 

calculated by dividing each sub-image into image-blocks and using edge detectors to 

classify each block into one of the five categories (Martinez, 2001).  

For matching purposes a version of the Manhattan 1L distance (2.2) and local, semi-

global and global edge histograms of the input features are used: 

79 4 64

, , , ,, ,
0 0 0

( , ) 5 g g s s
ehd i j i r j r i r j ri r j r

r r r
d x x x x x x

= = =
= − + × − + −∑ ∑ ∑x x          (2.15) 

The appropriate coefficients from left to right in (2.15) represent normalized histogram 

values ,i jx x  of the two images, as well as their global and semi-global versions. In 

order to emphasize the meaning of global edge histogram the weight factor 5 is added. 
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Bin values for the global edge histogram are computed from 80 local bins by obtaining 

cumulative distribution over the whole image for each type of edge. As for the semi-

global histogram, sub-images are grouped into 13 different segments as shown in Figure 

2.3. To form semi-global histograms edge histograms, for each type of edge, are 

summed over these segments. 

 

Figure 2.3: Thirteen segments used to generate semi-global histograms (Manjunath et 
al., 2003). 

Homogenous Texture Descriptors  

Homogenous Texture Descriptors (HTD) is a derivation of Gabor filter features. The 

extraction procedure is a result of standardisation activity, tests for retrieval and 

browsing applications and is limited to a filter size of 128x128. At first, the image is 

filtered with a bank of orientation and scale sensitive filters (Bober, 2001). Then the 

frequency domain is partitioned into 30 channels, and modelled by two-dimensional 

Gabor functions. Finally, the energy and the energy deviation of each channel are 

computed, and logarithmically scaled to obtain values for the mean energy, ie , and the 

mean deviation, id , of the thi channel. Mean and standards deviation of the whole image 

are denoted as ,DC SDf f . The descriptor is formed as follows:  

1 2 30 1 2 30[ , , , ,..., , , ,..., ]DC SDf f e e e d d d=x                          (2.16) 

The distance function is the weighted absolute 1L distance between two sets of feature 

vectors: 

, ,( , ) / ( )htd i j i r j rrd x x a r= −∑x x                              (2.17) 

Where ( )a r  is the standard deviation of appropriate features components. 
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2.5. Feature Evaluation 

In a CBIR scenario, each relevant class was taken in turn to perform a content-based 

query by example (QbE). Different feature vectors were used as well as different 

similarity measures, for a number of ground truth databases with varying sizes of the 

relevant class.  

2.5.1 Feature Selection 

Descriptors used for analysis consist of subsets of the considered set of visual 

descriptors. The decision about the choice was made based on the extraction method, 

desired properties and discrimination power. They include CLD, CSD, DCD, EHD, 

HTD, HSV histogram and GLCM. Note that the first five descriptors are MPEG-7 

descriptors while the remaining two descriptors are used in an effort to achieve better 

representation and discrimination of visual features. More details for the dimension, 

parameters and the similarity measures of used  features are given in the following 

paragraph. 

▪ CLD: the feature is given in (2.10), and with the following combinations of 

dimensions for each colour space component {28, 15, 15}. The distance function is 

the recommended MPEG-7 distance (2.11). 

▪ CSD : the feature is given in (2.12) , here M equals 32 and 64 with a scanning  

window of size 8x8. 

▪ DCD: The feature is given in (2.13). The distance function used is given in (2.14) 

with following parameter values for 15≈dT  and 2.1=α . 

▪ EHD : the feature is a 80 bin histogram and (2.15) is used as a version of 1L  

distance with transformations of the original input feature into global and semi-

global histograms. 

▪ HTD: this feature was considered in part of this thesis when retrieval on whole 

images was performed, i.e. in case images larger than 128x128, since this is the 

minimal accepted filter size. Additionally the descriptor dimension is set to 32 or 62. 

▪ HSV histogram: for this feature 32 bins are used for H component  and 30 bins for S  

component. The histogram intersection distance (2.4) was used as the similarity 

measure. 
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▪ Finally, GLCM uses four normalised values from Table 2.1. The distance function 

being the 2L  distance. 

Furthermore, a combination of descriptors has the potential to capture various levels of 

relevant information.: 

▪ ‘CLEH’: combination of CLD and EHD, the dimension of this feature space is 

138. 

▪ ‘CLCSEHHT’: combination of CLD, CSD, EHD and HTD, the dimension of this 

feature space is 202. 

▪ ‘CONC’: combination of CLD, CSD, HSV, EHD, HTD and GLCM, the 

dimension of this feature space is 268. 

This combinations were chosen based on experimental results as best performing 

combinations. Since the DCD had worse results in retrieval with individual descriptors  

and appropriate similarity measures, it has been  excluded  from the joint combination. 

In all of these cases the distance function used for retrieving similar images, is a linear 

combination of normalized distances per each feature (see Appendix B, Definition B.2). 

Having a number of descriptors per image can lead to “the curse of dimensionality” 

(Bellman, 1961). This refers to the exponential growth of the quantity of training points 

required to describe data, depending on the dimensionality of the input variables. 

However, the amount of training data is limited; hence increasing the dimensionality of 

the input space can lead to poor generalization capabilities. Though there are a number 

of methods to decrease dimensionality this is not the aim of this thesis. Hence the 

dimension of the feature space was kept limited and the focus was redirected to learning 

algorithms behind the relevance feedback method in CBIR scenarios. 

2.5.2 Ground Truth Image Databases 

Ground truth image databases that reflect on a wide range of contexts are considered in 

this subsection. Since there are countless possibilities in defining ground truth classes 

based on different subjective criteria, adapting the retrieval approach to a specific 

context does not necessarily guarantee improvement of performances. Several ground 

truth databases (depicted in Appendix A) are selected for evaluation. They range in 

image type, image size, application domain and category size: 
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▪ DColour database has 5 colour distinctive classes from the Corel dataset (Corel 

Corporation, 1990). This database contains “easy” classes used for effective colour 

descriptor evaluation (see Appendix A, Figure A. 1). 

▪ VisTex database (VisTex, 2002), collection of high quality texture images. Two 

main components are available in the database: reference textures of more than 

100 images of homogeneous textures and texture scenes for images with multiple 

textures in real world scenes (see Appendix A, and Figure A. 2 ; Table A. 1). 

▪ D25-1800 database is composed of 25 distinct classes from the Columbia color 

database (Nene et al., 1996). Each image is a 128 x 128 pixel representation of 72 

views for an object. The images were taken for objects on a turn table against 

black background with view angle every 5° of a 360° rotation (see Appendix A, 

Figure A. 3). The membership of each object to a class is not ambiguous. Hence 

this image database is often used in image recognition. However this database also 

allows for effective estimation of  relevance feedback approaches. 

▪ D8 database is a subset of the ETH-80 database (Leibe and Schiele, 2003). It 

consists of 80 objects from 8 different categories (apple, tomato, pear, toy-cows, 

toy-horses, toy-dogs, toy-cars and cups). In the original ETH-80 image database 

each object is represented by 41 images from different viewpoints. A subset of the 

available views, 7 views per object, was used in this evaluation database (see 

Appendix A, Figure A. 4). 

▪ D7-700 database has 700 images with a variety of simple and complex classes 

from the Corel database (Corel Corporation, 1990). The categories overlapping in 

meaning with different numbers of images per class, which are: buildings, clouds, 

cars, elephants, grass, lions and tigers. The number of ground truth images per 

class is 141, 264, 100, 100, 279, 99 and 100 respectively. There is a wide range of 

low-level visual diversities within each class (see Appendix, Figure A. 5). This 

makes this database a good candidate for search with  relevance feedback. 

▪ Caltech 101 image database (Fei-Fei et al., 2004) consists of images for objects 

belonging to 101 categories including a background category. There are about 40 

to 800 images per category. The size of each image is approximately 300 x 200 

pixels (see Appendix A, Figure A. 6; Table A. 2).  
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2.5.3 Performance Measures 

The evaluation of image retrieval is a necessary step for the successful use of retrieval 

systems and their practical applications. Evaluation is based on retrieval of the most 

similar neighboring samples to the query sample. The measures most frequently used 

are precision and recall. Each relevant class item is taken and a content-based query by 

example search. Evaluations were based various scopes with different feature vectors, 

different similarity measures, and for various size of relevant classes. The following set 

of values is often used to characterize CBIR system: 

▪ the number  of  images relevant for a particular query A , 

▪ the number of images irrelevant for a particular query B , 

▪ the number of retrieved images D , 

▪ the number of relevant retrieved images, E . 

Through the use of human subjects, the unlabelled database C A B= +  can be turned 

into the ground truth. 

 Precision is the ratio of the number of relevant retrieved images  to the total number of 

retrieved images: 

EP
D

=                                                           (2.18) 

Recall is the ratio of the number of retrieved relevant images to the total number of 

relevant images in the database: 

ER
A

=                                                           (2.19) 

High recalls correspond to a better answer of the system to the query. However, this 

measure alone is not enough to qualify the quality of the system. Best results correspond 

to high values of both precision and recall. As it can be noticed from the equations 

above precision and recall are not independent measures, for a retrieved set D  and total 

relevant set A : 

P A
R D
=                                                        (2.20) 

These values depend on the size of the retrieved set, if D  is considerably less than the 

size of the relevant set A  the values for recall can never be high, similarly if D is much 
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larger than A  the precision can never be high. By additionally normalizing the retrieved 

set of images to the total relevant set, focus of attention is restricted along the diagonal 

of precision-recall graphs where P R= .  

Huijmans and Sebe (2003) showed that precision-recall diagrams depend on the size of 

the ground truth classes with respect to the size of the database. They showed that the 

performances degrade for large image databases. A new measure, generality, 

representing the amount of relevant images in the whole database is used in conjunction 

with precision and recall. The same effect can be achieved for two-dimensional 

precision-recall curves by keeping parameters constant or performing experiments for 

different sizes of databases. 

In this work precision-recall approach was used, with several ground truth databases of 

different size and content. Precision values are averaged by using constant “relevant 

scope” values, rather than using constant recall values. Relevant scope is defined as the 

ratio between relevant images retrieved and the relevant class size. Averaging by 

constant relevant scope allows equal possibilities for precision-recall performances for 

each concept, regardless of the relevant class size (Huijmans and Sebe, 2003).  

2.5.4 Normalization of Image Features 

Though it can be stated that any value stored in a computer is discrete at some level, 

different attribute types can be distinguished within a feature, forming a descriptor with 

syntactical meaning.  

In case one of the input features has a relatively large range, then it can overpower other  

features within a joint combination of features. If common 1L  and 2L  distances are 

used,  features having a larger number of dimensions will have more weight in the 

overall distance compared to features with less dimensions. Usually either feature 

vectors or distances are normalized. 

Aksoy and Haralick (2000) investigated several approaches for feature normalization. 

For example ddistances are often normalized by linear scaling to unit range [0, 1] by 

using upper and lower bounds of the value in question. Alternatively, in an effort to 

avoid outliers, scaling to unit variance is often used. This is performed by shifting and 

rescaling a random variable to a normal distribution with zero mean and unit variance. 

However since a strong Gaussian assumption has to be made and this is often not the 



User Relevance Feedback, Search and Retrieval of Visual Content 
 

 41

reality, prior domain knowledge of the feature and similarity measure type is valuable 

information. Feature normalization by fitting feature histograms with well-known 

distributions as Normal, Lognormal, Exponential and Gamma densities was also 

investigated.  

The aim of both feature and distance normalization is to create conditions such that, 

without prior knowledge, all image features become equally important when 

contributing to the overall distance between two images. This relation is based on the 

assumption that the distance between two image descriptors is a random variable with a 

Gaussian distribution. 

In Figure 2.4 estimated probability density functions for each distance measure for 

features are depicted. The experiments were performed on random sets of images with 

more than 244650 image pairs. The histogram bins are normalized with the overall 

number of samples times the range of each bin. This normalisation results into a relative 

histogram corresponding to the probability density function for each feature. Each of the 

distribution is closely fitted with a mixture of Gaussian (Djordjevic, and Izquierdo, 

2006a). Distances for each distribution are normalize to the unitary  range. 

 

Figure 2.4: Probability density functions for distances between pair of images for 
different descriptors. 
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2.5.5 Feature Evaluation 

The following precision-recall curves were calculated for individual descriptors and 

their combinations described in section 2.5.1, and for the six databases described in 

section 2.5.2. In all cases appropriate similarity measures and their linear combinations 

are used. 

In Figure 2.5 precision–recall curves which are averaged per relevant scope, are shown 

for the DColour database. Each element of a class is considered as a query image and 

the most similar images are retrieved. The precision-recall curves show average 

retrieval performances for different descriptors and similarity measured over all five 

classes for the DColour database. Since the considered database is based on colour, 

individually CLD and CSD have the highest precision values for constant values of 

recall. These combinations of individual descriptors show slight improvement over the 

best performing individual descriptors, however the computational complexity and the 

dimensionality of the feature space is considerably increased. This is an example of a 

database where low-level similarity correlates to categories, and while as this is not a 

real life scenario it enables estimation of  low-level descriptors. However, DCD gives 

the worst performances not being able to discriminate among different classes. 

In case of the VisTex database, the highest precision is obtained as expected for 

combination of colour and texture descriptors, see Figure 2.6. Since this is a mainly 

texture database with both relevant colour ad texture information (see Figure A. 2). 

For the D8 database, representing an object database with uniform background, 

combinations of both colour and texture descriptors lead to higher precision accuracy. 

Furthermore, clear distinction  of several individual descriptors CLD, CSD and EHD, 

can be noticed  see Figure 2.7. 

For the D25-1800 database, the images have homogeneous background but with 

difference in scale and viewing angles per object. The highest performances were 

detected for several individual descriptors: CSD, HSV histogram and CLD, in 

descending order. The three feature combinations show improvement comparing to 

results for CLD, they also give worse results than HSV histogram, see Figure 2.8. 

Hence the colour is the dominant feature used here, with best performing CSD that 

incorporates a level of spatial information. The additional texture descriptors add noise 

since this database is composed of single object images with different camera angles 
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and illumination. Since the background is uniform and the texture depends on the two 

mentioned conditions, colour descriptors are more resilient to these types of changes 

and thus give better performances. 

  

Figure 2.5: Average Precision-recall over all classes, for selected individual 
descriptors and three feature combinations (DColour database). 

 

Figure 2.9 and Figure 2.10 show results for two real life databases, with very complex 

classes, these are D7-700 and Caltech 101 (see Figure A. 5, Figure A. 6). For the 

Caltech 101 database all three descriptor combinations have very similar results, 

therefore only one combination was depicted for clarity of presentation, CLEH. 

For Figure 2.9, the D7-700 database, the backgrounds as well as the content within the 

same category is very diverse. In this case the DCD shows considerably better 

performance than the other individual descriptors as well as descriptor combinations. 

Hence the type of the database is of extreme importance and influences the quality of 

results for each descriptor. 
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Figure 2.6: Average precision-recall for selected individual descriptors, and three of 
three feature combinations (VisTex database). 

 

Figure 2.7: Average precision-recall for selected individual descriptors, and three 
fetaure combinations (D8 database). 
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Figure 2.8: Average precision-recall for selected individual descriptors, and three 
feature combinations (D25-1800 database). 

 

Figure 2.9: Average Precision-recall for selected individual descriptors, and three 
feature combinations (D7-700 database). 
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Figure 2.10: Average precision-recall for selected individual descriptors, and their 
joint feature combinations (Caltech 101 database). 

 

For Figure 2.10, the Caltech 101 database, one individual descriptor EHD outperforms  

other descriptors and descriptor combination, over a variety of categories. Since there is 

a big variety in colours within each category (Figure A. 6) , texture descriptors as EHD 

and HTD outperform colour descriptors as well as the combinations. 

As expected depending on the type of the database individual descriptors can perform 

better than descriptor combinations. This is due to the fact that for some databases the 

additional descriptors add also noise as well as valuable information. 

However, in a generalized case, if an adaptable approach can be found, it would take out 

of consideration the need to have feature selection in advance. This is the strategy taken 

in this thesis since specific focus was given to the learning approach and to the 

interactive adaptation of relevance for individual features. This is achieved by 

incorporating subjective user defined information into the learning approach. 
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CHAPTER 3 :  Relevance Feedback for 

Interactive CBIR 

In this chapter issues related to relevance feedback for image retrieval are presented. 

and a review of developments in content based systems with relevance feedback is 

given. Then the evolution of learning machines used for relevance feedback is presented  

with a focus on  the SVM framework. The learning theory behind this framework is 

discussed as well as the advantages and disadvantages that make it the learning method 

of choice used in this thesis. Issues of parameter adaptations in SVMs are addressed,  

and comparison of several kernels for RF approach considered. 

3.1. Introduction 

Early approaches for image retrieval were based on keywords, manually annotated 

images inspired by information retrieval in text documents (Rijsbergen, 1979). Though 

manual annotations were developed to preserve knowledge they are burdensome, and 

dependent on subjective interpretations of the professional annotator. In CBIR a search 

session is usually initialized by either visual example or a small set of previously 

annotated images related to a given semantic concept. Visual similarity search is than 

performed on the whole database. The search engine returns images that are similar to 

the query image based on low-level feature representations extracted from the content. 

However, low-level similarity relies only on machine’s interpretations of the content, 

and does not reflect conceptual meaning for the visual content.  
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Alternately, for specific application scenarios limited and well-defined ontologies can 

be used (Simou et al., 2005). In a specific domain ontology the aim is to propagate 

“words” to the whole content database using relationships and rules defined over the 

domain knowledge. Though very promising this approach places a heavy burden on the 

designer of high-level relations among concepts. 

The most natural way of getting user’s subjective information and preferences into the 

system is by using models that incorporate online learning from the user interactions 

with the search engine. The idea behind this model is to integrate a “relevance 

feedback” loop into the system with the user at the centre and the machine learning 

from user’s feedback. This loop is illustrated in Figure 3.1. The relevance feedback 

concept is based on the analysis of relevant and irrelevant information fed back into the 

system by the user. This analysis predicts and learns user’s preferences in order to 

iteratively improve retrieval results. Semi-automatic adaptive learning strategies based 

on relevance feedback are aimed at learning relations between high-level semantic 

concepts used by humans to identify objects in an image and low-level descriptions of 

the same visual information. 

In every iteration the user provides feedback about the relevance of previously retrieved 

content. A crucial part of a relevance feedback loop is a learning step which utilizes user 

preferences by adapting the learning approach in the system, based on provided 

knowledge accumulated in time. The goal is to minimize necessary interaction between 

the user and retrieval engine in order to obtain the targeted image or to retrieve as much 

as possible desired images with a certain concept. A generic CBIR system with RF is 

presented in Figure 3.1. 
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Figure 3.1: Generic architecture of a CBIR engine with RF. 
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Early works in CBIR dealt with subjectivity of visual impressions for different users 

which does not easily relate to the low-level feature space (Kurita and Kato, 1993;  

Picard et al., 1996). Hence this led to a number of general-purpose image search engines 

that have been developed in the last decade.  

One of the first available CBIR systems was Query by Image Content (QBIC) initially 

based on colour retrieval (Flickner et al., 1995). QBIC was later extended to enable 

retrieval based on images, sketches and drawings for colour, texture, and motion 

features.  

Next, the Virage Image Search Engine (Virage) allows querying of general image 

primitives as colour, shape, texture or domain specific as face recognition. It focuses on 

query refinement by changing the relative weights of visual features (Gupta and Jain, 

1997).  

In the Multimedia Analysis and Retrieval System (MARS) an image is represented as 

weighted multi-feature object (Rui et al., 1997). The relevance given to an image in a 

relevance feedback scenario is modelled with numerous levels of importance and a 

probabilistic Boolean retrieval.  

The ImageRover system (Sclaroff et al., 1997) was based on k-d trees search and 

dimensionality reduction with principal component analyses.  

The VisualSEEK system (Smith and Chang, 1996) uses a feature back-projection 

scheme to extract salient image regions. The system enables joint content-based and 

spatial search. Images with similar arrangement of regions as the queried image are 

retrieved. A sketch tool enables the user to sketch and position regions on a grid as well 

as to allocate colours. WebSEEK, is a similar system for web applications (Smith and 

Chang, 1997), which automatically gathers content from the Internet and saves it into a 

database with extendible subject taxonomy.  

The NeTra retrieval system (Ma and Manjunath, 1997) uses a robust segmentation 

algorithm and features as colour, texture, shape as well as spatial location information 

for image regions in a region based-search and retrieval engine.  

The Photobook was developed in the MIT Media Laboratory (Pentland et al., 1996) and  

it consists of a number of tools for image browsing and search. A user feedback region 

annotation tool is used to infer image labels. Photobook uses both content-based 

features and text annotations for querying.  
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The SIMPLIcity (Wang et al., 2001) is an image retrieval system for integrated region 

matching based on image segmentation. It uses semantics classification methods to 

reduce the search space by defining categories.  

Blobworld (Carson et al., 2002) allows querying based on limited number of regions by 

merging single-region query results. Joint distribution of colour, texture, and position 

features is modelled with Gaussian mixture models and parameters are estimated with 

Expectation Maximization (EM).  

 Finally, Cortina (Quack et al., 2004) uses combinations of standardized MPEG-7 

descriptors and scales over large databases. 

 However in image retrieval the individuality of various users can not be ignored since 

different users have different interpretations of visual content. Therefore including the 

user into the retrieval loop is the only way to identify the target of user’s search and 

capture different interpretations or intended usage for the same multimedia content. 

Early learning approaches exploiting user relevance feedback were developed by  

Sclaroff et al. (1997), Rui et al. (1997), Ishikawa et al. (1998), Nastar et al. (1998), Cox 

et al. (1998) etc. 

3.1.1  Application Scenarios for the RF Problem 

Visual impressions of content are not only subjective to a particular user but also differ 

based on prior knowledge, as well as current circumstances of the search and retrieval 

session. Therefore an automated annotation of images is sensible only in well-defined 

image databases with clear distinctions between classes and when the application 

scenario requires such categorization. The application scenario and domain knowledge 

are crucial for defining different problem variations in relevance feedback approaches. 

Several directions can be taken starting with very different assumptions. 

 Cox et al. (1998, 2000) used a targeted search scenario when the user has an already 

envisaged concept and selects semantically similar images to the desired one. In a 

different scenario search by association or browsing was considered. This is a non-

professional user scenario when the user is not certain what he is searching for. The 

search is very subjective and difficult to evaluate since the system does not need to 

retrieve all relevant images just some based on users preferences. Alternately, in a 

category search scenario the user has a semantic concept in mind that corresponds to a 
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class of similar images. In this scenario a user is searching for most of the images from 

the relevant class. The measure of effectives is the ability to retrieve all relevant images 

to a concept before the irrelevant ones , in as less iterations as possible. This is the 

scenario used for evaluation in this thesis. 

The targeted search correspond to a “greedy user model” defined by Zhou and Huang 

(2003). The user is impatient and wants to view the most relevant images to the concept 

even though they might not be the most informative for the RF learning approach. They 

also defined a “cooperative user model”, where the user is patient enough to provide 

more feedback iterations and view examples which are most informative for the 

system., with highest levels of uncertainty. Similarly to this model Cox et al. (2000) 

searched for sets of images that would minimize the expected number of future 

iterations. In an alternative approach (Tong and Koller, 2000; Tong and Chang, 2001) 

proposed active learning with SVM for text classification and image retrieval, as means 

for guiding the learning approach to minimize the number of iterations.  

What is relevant in RF approaches is to rank relevant images before irrelevant ones, 

hence the method behind the approach does not need to be a classifiers with clear 

dictions among classes, but a ranking module with probabilistic levels of importance. 

However, RF approaches are often used as a part of a larger framework to facilitate 

automatic annotation by propagating textual annotations based on low-level similarity 

of user provided feedback (Lu et al., 2000; Dorado et al., 2006; Djordjevic et al., 2005). 

Hence in this case the problem is classification, with a crisp decision about membership 

to a particular class. Accuracy of classification and rate of reducing the error through 

relevance feedback iterations, are measures of effectiveness. 

Kurita and Kato (1993) described the problem of having variable relevance feedback 

information in time even for the same user. Hence in its basic form relevance feedback 

is a short term refinement strategy, as opposed to long term feedback based on many 

users that can be considered to accumulate knowledge (Bartolini et al., 2001;  Fournier 

and Cord, 2002). Other key  issues in RF approaches are:  

▪ How to appropriately define and select a feature space in order to present not 

only visual image content but also the interpretational characteristics of the 

human visual system. Some examples of possible RF systems deal with features 

based on: whole images, regions, tiles, patches interest points. 
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▪ How to choose the similarity measure between representative feature vectors to 

reflect high-level semantic similarity between media items observed by humans. 

▪ How to exploit various user feedback information: relevant samples, irrelevant 

samples, fuzzy levels of relevance, relative judgement etc. 

▪ How to enable real time interaction between the user and the machine while 

dealing with huge databases. 

3.1.2 Overview of Learning Approaches for Relevance Feedback 

Various relevance feedback algorithms have been proposed in the last 10 years as an 

integral part of content-based image retrieval systems. The learning process can relays 

on only positive examples (Sclaroff et al., 1997; Ishikawa et al. 1998; Heesch and Ruger 

2003; Jing et al. 2004a, 2004b), both positive and negative examples (Nastar et al., 

1998; Porkaew et al., 1999), multiple levels of relevance (Rui et al. 1998), or fuzzy 

membership functions (Yap and Wu, 2003). 

 A wide class of approaches is based on learning object structure via training on 

segmented regions.  

For Instance, Ratan et al. (1999) identified an image as a set (a bag) of regions with 

every region represented by its own low-level features. Entire bags are labelled as 

relevant or irrelevant and the learning approach for RF tries to learn important regions 

for the current search session. The approach searches for areas in the feature space that 

are close to all positive and far from all negative bags of regions.  

Forsyth and Fleck (1997), defined “body plans” for objects (e.g. horses) based on 

colour, texture, shape information and geometrical relations among parts of a scene. 

Vasconcelos and Lippman (2000) used Bayesian inference on block based image local 

features for relevance feedback learning. 

Hong and Huang (2001) used attribute relational graphs for context of objects and  

scene. EM was exploited to learn parameters of a probabilistic model based on multiple 

graph examples.  

The following section gives a review and analysis on several investigated techniques 

and approaches for relevance feedback. In general based on the learning method the 

relevance feedback models can be classified into: 
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• Descriptive learning models. The relevant class is modelled with a parametric or 

non-parametric model,  based on  training samples in the feature space (e.g. 

Gaussians, Gaussian Mixture Models, Parzan windows). 

• Discriminative learning models. These models do not describe classes but the 

boundaries separating the classes (e.g. SVMs, Biased Discriminative Analyses). This 

class of models also includes neural networks, since they implicitly infer ranking 

and classification.  

Several approaches representing examples of the above mentioned classification of 

supervised learning techniques have been described in the following sub-section in an  

effort to give an insight into the development of this area (Djodjevic and Izquierdo, 

2005).  

Descriptive Learning Models 

As described in Huang and Zhou (2001) early image relevance feedback methods were 

based on heuristic techniques with empiric parameter adaptation. The initial idea was 

based on independent weighting of various features in the joint feature space. The 

reasoning behind this idea is that the feature providing the most compact clustering of 

relevant images and separation of relevant and irrelevant image was weighted the most.  

In many systems, a relevance feedback module is a part of query by example (QbE) 

paradigm. One of the first CBIR systems using relevance feedback is MARS (Rui et al. 

1998). It introduced re-weighting techniques and query point movement (QPM), for 

exploitation of user’s feedback. The re-weighting scheme assumed independency of all 

features, hence positive samples were modelled with a single Gausssian distribution. 

The new query vector was a mean of all positive examples in the feature space,  

weighted with inverse variance. The alternative approach  based on QPM, shifted the 

new query feature vector towards positive examples and away from negative examples. 

This approach is based on a modification of the classical Rocchio’s method used in text 

based document retrieval. A new query vector for each feature i′q is formulated out of 

the old query vector iq  and relevance feedback information from the user: 

1 1 , 1,...,
R N

i i ji ji
R Nj D j D

i m
N N

α β γ
∈ ∈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟′ = ⋅ + − =

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑q q x x  
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Where m  is the number of features, , ,α β γ  are constants, RN  and NN  are numbers of 

images in the relevant RD  and irrelevant set ND , respectively. And jix  is thj  training 

sample in the appropriate set. 

Even some of the latest approaches (Jing et al., 2004a, 2004b) considered information 

retrieval techniques for RF. The new query vector is combined with emphasized 

importance on the latest labelled positive examples, and decreased importance of prior 

positive examples, again based on a modification of Rocchio’s method. 

Heesch and Ruger (2003) combined QPM and weight update for their RF approach. The 

new query is rendered based on user’s feedback. The visual interface plots thumbnails 

of retrieved images with respective distance from the centre of the screen proportional 

to the dissimilarity of each image to the query. By moving the images on the screen the 

user provides RF to the system as a real-valued vector of distances. These distances 

differ from values provided by the system using low–level features. Minimizing the sum 

of square errors for these two different distances leads to a solution of the weight 

updates for the next iteration. 

Newsam et al. (2001) described a search engine based on combination of keywords and 

low-level features. Content-based retrieval is performed in semantic categories using 

multiple image features. The updated query vector is obtained through QPM.  

In Cox et al. (1998), the PicHunter system uses relevance feedback in a form of relative 

judgment as opposed to the stronger classification into relevant/irrelevant. An extension 

of k-d trees to stochastic settings leads to the proposed “stochastic-comparison search”.  

Porkaew and Chakrabarti (1999) introduced a query extension scheme based on 

multipoint query opposed to QPM approach. The relevant samples are clustered and 

nearest-neighbour decision approach is used to define membership to a cluster, for a 

multipoint query. 

Ishikawa et al. (1998) generated a new optimal query approach by minimizing the total 

distances of positive examples from the new query, based on Mahalanobis distance. In 

this case parameter estimation lead to a solution for the new query vector that resulted 

in a weighted average of all positive images. In principle this approach is based on 

singular Gaussian distribution assuming that all positive examples are clustered 

together. However it is the first non heuristic technique solving an optimisation problem 

and considering correlation among features.  
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While early probabilistic RF systems assumed that positive images follow a single 

Gaussian distribution, on the other hand later systems were based on more complex 

distributions such as Gausssian mixture models (GMMs). Qian et al. (2002) used 

Gaussian Mixture Model (GMM) to represent the distribution of relevant images using 

both relevant and irrelevant examples as well as unlabelled data. Estimation of 

parameters for the mixture of Gaussians is based on positive relevance feedback and the 

assumption that positive examples may be grouped in the feature space and mutually 

separated by negative examples. 

In a similar manner, Schettini et al. (1999) considered negative examples and updated 

weights for each separate feature, by comparing the variance of positive examples to the 

variance of the overall positive and negative examples. 

In the effort to avoid assumptions for shape of a density model, Meilhac and Nastar 

(1999) used a non-parametric distribution for targeted samples based on Parzen window 

density. The problem is defined as a difference of densities for relevant and irrelevant 

samples. Every labelled image is the centre of a Gaussian with a high probability that 

the neighbouring elements are similar. The approach is incremental and user’s feedback 

is used to more precisely estimate the model. i.e. the Gaussian smoothing function 

become narrower with increasing number of labelled images. 

Discriminative Classification Models 

A straightforward way for dealing with non-linearity of visual feature space was 

introduced by discriminative approaches and kernel based algorithms. As mentioned 

before, discriminative classification models do not primarily concentrate on estimating 

the correct distribution of relevant and irrelevant data but rather on estimating the 

boundaries between classes. Kernel based approaches were used with non-linear 

distributions based on extension of linear discriminative analysis in Zhou and Huang ( 

2001a, 2001b). Neural networks implicitly enable classification and ranking and thus 

can be effectively used for relevance feedback (Laaksonen et al., 1999; Koskela et al., 

2004; Yap and Wu, 2003 ). Statistical methods based on kernel SVMs and their good 

generalization capabilities as well as active learning were considered for RF by Hong et 

al. (2000), Tian et al. (2000a), Jing et al. (2004a, b), Tong and Chang (2001). 
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One of the directions modern relevance feedback techniques are heading considers 

solving a two class (relevant/irrelevant) problem by use of Discriminative Analysis 

(DA). Conventional linear discriminative analysis (LDA) approach tries to cluster all 

irrelevant images into one class, whereas it is known that negative examples belong to 

many different classes. Muller et al. (2001) tried to find linear projections such that 

different classes are well separated. Separability is measured by how far apart are the 

projected means of two classes and how big is the variance of data in the projected 

direction. Therefore, in the following sub-section variations of DA approaches and their 

application in relevance feedback systems, are depicted. 

Wu et al. (2000) considered image retrieval to be a transductive learning problem, using 

both labelled and unlabelled data samples. A linear transformation based on the labelled 

data set that could be generalize onto the unlabelled dataset was found through multiple 

discriminative analyses (MDA). The transformation maximizes the ratio of inter-class 

vs. intra-class scattering, with all negative examples scattered among each other in the 

feature space. MDA is a generalization of LDA for multiple classes, a supervised 

statistical method  that requires large number of labelled samples. By combining MDA 

with EM into discriminate expectations maximization algorithm (D-EM), the MDA 

approach is provided with enough labelled data. D-EM initially starts with a weak 

Bayesian classifier, hence the unlabeled dataset is provided with probabilistic labels and 

the new formed training set projected to a different feature space with MDA. The main 

disadvantage of MDA is the assumptions that both positive and negative examples 

cluster into distinctive classes, that is, each negative example is treated as from a 

different class. However several negative examples can come from the same class and 

splitting negative examples into different classes can mislead the resulting 

discriminating subspace.  

Hence, Zhou and Huang (2001a, 2001b) suggested a variation of the above approach in 

a form of Biased Discriminative Analysis (BDA). They assumed that all the positive 

examples are clustered in one class while negative examples negative examples can 

come from an uncertain number of classes. In this case a biased classification problem 

is defined with multiple classes but with the user being interested only in one, the 

positive class. The goal is to determine a function, mapping, that would enable 

maximum clustering of positive examples moving them away from the negative 

examples. In other words maximizing scattering of negative examples to a positive 
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centroid and minimizing within class scattering of positive examples. As a modification 

of the method above, an extension to non-linear space is proposed based on kernel 

methods. Kernel BDA is formulated through expressing the BDA problem using inner 

product in the transformed space. Zhou and Hung (2001a) showed that kernel BDA 

produces better results than both LDA and SVMs. However, kernel BDA is sensitive to 

imbalance between positive and negative samples and needs a considerable amount of 

training to perform well. Nakazato et al. (2003) further broadened the approach by 

combining a group oriented user interface with BDA. Group Biased Discriminative 

analyses deals with image retrieval using classification of multiple positive and multiple 

negative classes. Again this is done by maximizing scattering for negative classes and 

clustering for positive classes as well as moving away negative clusters from positive 

ones. 

 

Indisputably there are number techniques integrating neural network learning 

approaches and relevance feedback systems. 

Laaksonen et al. (1999) developed the PicSOM CBIR system with tree-structured self-

organizing maps (TS-SOM). This is an unsupervised topologically ordered neural 

network for image indexing along low-level features. High-dimensional input feature 

space for positive and negative examples is mapped to a low-dimensional lattice and its 

neighbouring neurons. After low-pass Gaussian filtering appropriate labels are spread to 

corresponding neighbourhoods under assumption that a good mapping will keep 

positive examples clustered while negative examples will scatter. This approach 

considers QbE and iterative refinement using relevance feedback (Koskela et al., 2004). 

The PicSOM system supports multiple features by employing parallel self-organizing 

map for each feature. The disadvantage of this approach is the high computational 

requirement for obtaining subsets of relevant images for each feature and the 

assumption of feature independence. 

 Yap and Wu (2003) presented a fuzzy RF approach. A continuous fuzzy membership 

function models user’s fuzzy feedback by weighting differently different images based 

on subjective levels of relevance. Radial bases function (RBF) neural network is used as 

a learning approach. Three hidden layers of the RBF neural network correspond to 

relevant, irrelevant or fuzzy labels. The output layer combines responses from the 

modules as a liner combination of the three sub-networks. Fuzzy weights are 
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determined using a fuzzy membership function and the closeness of a sample to the 

centre of a relevant cluster. 

 

In the last couple of years there has been a huge impact of SVMs (Vapnik, 1995; 

Schokopf and Smola, 2002) on classification, recognition and retrieval problems, 

specially RF. The input data is mapped into higher-dimensional feature space using a 

non-linear transform, kernel. In the newly defined feature space linear discrimination 

boundary between classes can be easily found. A subset of feature vector, which are 

closest to the decision surface and therefore define it, are called support vectors (SVs). 

Hong et al. (2000) and Tian et al. (2000a) used SVMs to estimating the weight of 

relevant images in the covariance matrix of Mahalanobis distance, used as a similarity 

measure. This approach is a combination of already exploited techniques and the 

statistical learning algorithm for SVM. Different weights are assigned based on the 

distance of positive examples from the SVM based hyperplane, the larger the distance 

the more distinguishable the relevant examples from the negative ones and the larger the 

weights.  

Jing et al. (2004a, b) used multiple regions to generate image signatures of different 

dimensions and match them with Earth Mover’s distance (see Chapter 2). A new kernel 

for SVMs based on EMD is introduced to better accommodate the region-based 

approach. It incorporates features of all the regions and allows many-to-many 

relationship among the regions. Thus enabling higher robustness to inaccurate 

segmentations. However there is no theoretical explanation and proof that the 

introduced kernel leads to an optimal solution of the SVMs problem (see Chapter 4). 

Chen et al. (2001) used in their RF approach a statistical learning machines called one-

class SVM. A kernel based one-class SVM acts as a density estimator for positive 

examples. Though the approach shows promising results the negative examples when 

they exist, are a source of information completely ignored in this approach. 

Similarly, Guo et al. (2002) developed a constrained similarity measure for image 

retrieval, based on SVMs. This measure learns the enclosing boundary for similar 

images in a non Euclidean space. The relevant images inside the boundary are ranked 

based on the Euclidean distances from it and images outside of the boundary are treated 

with less relevance. 
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Learning approaches play an important role in RF algorithms, however they have two 

main drawbacks: scarce training data, usually there is much less training data available 

than required by dimensionality of the feature space; and imbalance in size of different 

classes (Chang et al., 2003; Zhou and Huang, 2003). The choice of using SVMs for the 

learner in this thesis was made on the following arguments:  

▪ SVMs show good generalization and learning properties even based on limited 

number of training examples. 

▪ There is no need for prior assumption for the shape of the distribution of the 

relevant class, even though some assumptions have to be made when the non-

linear kernels are used for mapping.  

▪ SVMs enable ways of adapting the kernel to the data by integration of prior 

knowledge, unlabelled samples and active learning. 

▪ Though this is mainly a hard binary classification approach, appropriate ranking,  

necessary for RF methods, can be inferred based on the closeness of samples to 

the decision surface. 

3.2. The Learning Algorithm, Support Vector Machines 

Relevance feedback systems deal with an explicit need for generalizing the behaviour of 

labelled training set data over the unseen and unlabelled testing data. Therefore 

effectiveness of a relevance feedback system does not only depend on the features and 

the metric used, but also on the supervised learning approach chosen to learn behaviour 

of different classes. A generalized, nonlinear and high-dimensional feature space is 

considered in this thesis, while offering additional multi-feature information it also 

makes the problem more challenging.  

3.2.1  The Learning Theory 

 The beginnings of learning theory date from 1960’s  when Rosenblatt introduced a new 

kind of learning machines, perceptrons or neural networks. They were designed as 

connected neurons where each neuron defines a different separating hyperplane. The 

overall learning approach defines a piecewise linear separating surface (Cortes and 

Vapnik, 1995). The input space is a N -dimensional feature space X , with  m training 
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patterns ix  and  their binary labels iy . Since this is a supervised approach the input can 

be denoted as follows: 

1 1 2 2( , ), ( , ),..., ( , ) { 1, 1}N
m my y y ∈ × − +x x x \                           (3.1) 

The neurons divide the space X  into two regions, the part where the output iy  takes 

value -1 and the part where it takes value 1. The output is generate based on the 

following  functional dependence to an input pattern ix : 

{( ) }, 1,...,i iy sign b i m= ⋅ − =w x  

Where vector w  and bias b  define the position of the separating hyperplane 

( ) 0i b⋅ − =w x . In 1962 Novikoff (cited Vapnik, 1995) introduced the first theorem for 

perceptrons  making the connection between, the generalization capabilities required by 

learning approaches, with the principle of minimizing the number of training errors.  

3.2.2 The Learning Problem 

The goal of a learning task is to generalize the dependency established on limited 

number of training samples onto a larger testing set coming from the same underlying 

distribution as the training set. The input is a binary labelled supervised training dataset, 

as in (3.1). The learning approach aims at finding a set of functions ( , )f αx , that 

depend on the input samples x  and a set of parameters Λ , whereα ∈Λ . The goal of a 

learning machine is to choose a function that best models the supervisors input. A way 

to solve this task is to measure the error between a response given by the supervisor and 

an approximation returned by the machine. This error can be represented by a loss 

function ( , ( , ))L y f αx . Minimizing the expected value of the loss function leads to the 

risk function: 

( ) ( , ( , )) ( , )R L y f dP yα α= ∫ x x                                 (3.2) 

Specific formulations of  such learning problems depend on the form of the loss 

function and are frequently used in pattern recognition, regression estimation and 

density estimation learning problems (Vapnik, 1999). In the case of binary classification 

the most common loss function is the so-called 0/1 function: 

0, if ( ( , )) 01( , ( , ))
1,                otherwise2

y f
L y f

α
α

⋅ <⎧
= ⋅ ⎨

⎩

x
x                          (3.3) 
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The actual problem consists in minimizing the risk function using empirical training 

data. Previous considerations provide the basis for empirical risk minimization (ERM) 

principle. In ERM the expected risk function from (3.2) is replaced with the empirical 

risk based on m  training samples: 

1

1( ) ( , , ),
m

emp
i

R Q y
m

α α
=

= ∑ x                                     (3.4) 

where ( , , )Q y αx denotes a specific loss function.  

Vapnik (1995) defined the theory of consistency of a learning process which provides 

necessary and sufficient conditions for convergence of the ERM principle. These lead to 

a uniform convergence of the empirical risk ( )empR α  towards the expected risk ( )R α : 

lim sup ( ) ( ) 0,empm
Probability R R

α
α α ε ε

−>∞ ∈Λ

⎧ ⎫⎪ ⎪− > = ∀⎨ ⎬
⎪ ⎪⎩ ⎭

                         (3.5) 

Vapnik (1998) also defined the entropy on a set of indicator functions. In a 

classification approach a set of indicator functions ( , , )Q y αx , takes only the values 0 or 

1. For different values of α ∈Λ  the set of indicator functions ( , , )Q y αx can generate 

N Λ  different separations of m  independent and identically distributed data samples, 

producing binary loss vectors: 

1 1( ( , , ),..., ( , , ))m mQ y Q yα αx x                                  (3.6) 

The necessary and sufficient conditions for consistency of the ERM principle, given in 

(3.5), are fulfilled for: 

( )lim 0, 0
m

H m
m

ε
Λ

→∞
= ∀ > ,  

where ( ) E lnH m NΛ Λ=  defines random entropy or diversity on the set of indicator  

functions. Tighter non-asymptotic bounds on uniform convergence given in (3.5), can 

be expressed through annealed VC-entropy denoted with ( )annH mΛ  and growth function 

( )G mΛ . Both these values lead to quality estimation of the ERM principle, and they are 

connected with random entropy ( )H mΛ  through the following inequality (Vapnik, 

1998): 

( ) ( ) ( )annH m H m G mΛ Λ Λ≤ ≤ .                                    (3.7) 
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The annealed VC-entropy ( )annH mΛ  is used to formulate a fast rate convergence of 

ERM principle. Whilst the growth function ( )G mΛ  enables both consistency of ERM 

principle and fast asymptotic rate of convergence independently on the underlying 

probability.  

The VC-dimension on a set of indicator functions ( , , ),Q y α α ∈Λx  is described as a 

capacity of a set of functions. It is the maximum cardinality h of the input set which can 

be separated into all possible 2h  ways, by using the binary loss vectors from (3.6). And 

at the same time there is no set of higher cardinality satisfying the above mentioned 

property. The tightest bound can be defined through the growth function, which is either 

linear ( ) ln 2G m mΛ =  with infinity VC-dimension or it is bounded by a logarithmic 

function: 

 ( ) ln 1mG m h
h

Λ ⎛ ⎞< +⎜ ⎟
⎝ ⎠

                                          (3.8) 

where h  is a finite VC-dimension and h m< . 

 Based on (3.7) and (3.8) the VC dimension h  provides a constructive upper bound on 

the growth function, and enables asymptotic high rate of convergence independently of 

the problem.  

 

 

Figure 3.2: Small number of training samples (left), the under-fitted problem (middle) 
and the over-fitted problem (right). 

 For large training sets, minimizing the empirical training risk would lead to good 

minimization of the expected risk (3.5), however for small training sets the problem of 

over-fitting and under-fitting appears. If the number of samples is small both linear and 

nonlinear separation bounds are correct, though the linear approach is simpler with a 

slightly larger error, Figure 3.2 (left). However, when more training data is available 

there is considerable difference in error and the correct plane can be easily identified. In 
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Figure 3.2 (middle) the nonlinear bound is correct while the linear bound under-fits the 

data. In case the linear bound is correct as in Figure 3.2 (right) the nonlinear bound 

over-fits the data. With a small training set, minimizing the empirical risk does not 

guarantee a small expected risk and good generalization properties, since the case of 

over-fitting can often occur.  

Vapnik-Chervonenkis theory (Vapnik, 1995) restricts the complexity of a set of 

function ( , )f αx , implemented by a learning machine, to a class of functions with a 

capacity corresponding to the amount of training data. For a loss function defined with 

( )1 ,
2 i if yα −x  and some ,  0 1η η≤ ≤  the following holds true with probability of at 

least 1 η− , and for VC dimension h m< : 

( )2log 1 log 4
( ) ( )emp

mh
hR R

m

η
α α

⎛ ⎞+ −⎜ ⎟
⎝ ⎠≤ +                                (3.9) 

The ERM principle is intended for large training sets where /m h  is large and the 

second term in (3.9), the VC confidence, is small thus the expected risk is close to the 

empirical risk. In this case small value of the empirical error leads to small expected 

error as defined with (3.5). However when there is not enough training data the value 

for /m h  is small, in this case because the VC confidence might be large and even if the 

empirical risk is small there is no guarantee that the expected risk ( )R α  will be small. 

In that case the ERM principle does not work and a new approach called Structural Risk 

Minimization (SRM) principle is used. The new principle simultaneously minimize both 

the empirical risk and the VC confidence form (3.9). 

The VC confidence term depends on the chosen set of functions ( ),f αx  and is a 

monotonically increasing function of h . However, empirical and expected risk depend 

on a particular function from the set of functions chosen for the training phase. The goal 

is to find a subset of the chosen set of functions, so that the upper bound of expected 

risk is minimized (see Figure 3.3). The entire set of functions is divided into nested 

subsets and for each subset the exact or bounded value of h  is found. SRM finds the 

subset of functions that minimize the expected risk and the solution are those functions 

for which the overall sum in (3.9) is minimal. 



User Relevance Feedback, Search and Retrieval of Visual Content  
 

 64

Empirical risk 

Confidence 
interval 

Bound on 
expected risk 

1h o p th nh

1S o p tS
nS

h

 

Figure 3.3: The smallest bound of the expected risk is achieved for an optimal subset of 
the set of functions, with minimized sum of empirical risk and VC confidence bound 

(Vapnik, 1998). 

Generally speaking, separating hyperplanes in an N dimensional feature space have a 

VC-dimension of 1N + , as proven by Burges (1998). In a high-dimensional feature 

spaces the VC confidence, as a monotonically increasing function of h , for small 

training sets with small ratio /m h , might also have a large value. Hence the expected 

risk and generalisation properties of the learning machine might lead to large expected 

risks and bad generalisation over testing sets. However, as it will be explained in the 

next subsection, margin based hyperplanes can have small training sets and still 

generalize well. 

3.3. Support Vector Machines, Optimal Hyperplane Classifier 

SVMs are based on SRM principle, i.e. they minimize the upper bound of expected risk. 

SRM gives better results than ERM principle, which minimizes the error of training 

data, and is used in classical neural networks. This difference in approaches is what 

enables SVM’s better generalization properties over the unseen data, which is at the end 

goal of learning methods.  
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For a binary separable learning problem the set of indicator functions, defining 

separating hyperplanes can be denoted as : 

( ) 0i b⋅ + =w x , ,N b∈ ∈w \ \ , 1,...,i m=  

Where vector w  and scalar bias b  define the position of the hyperplane. For set of 

functions denoting hyperplanes, the VC-dimension can be bounded in terms of another 

quantity, the margin. The margin is the minimal distance of samples for different classes 

from the decision surface. In case the training dataset is separable, the weight vector w  

and bias b  are rescaled in such a way that the closest points to the hyperplane satisfy 

the following condition: 

 ( ) 1i b⋅ + =w x .                                               (3.10) 

In this case a canonical hyperplane representation is obtained in the following form: 

(( ) ) 1, 1,.., .i iy b i m⋅ + ≥ =w x  

The hyperplane is optimal if it separates a set of vectors without error and maximizes 

the distance between vectors from different classes that are closest to it. 

1( ) 1b⋅ + =w x

2( ) 1b⋅ + = −w x

1x
2x

w

2
w  

Figure 3.4: Separating margin, in a binary classification problem. 

From Figure 3.4 it can be seen that the optimal hyperplane is orthogonal and at half-way 

of the shortest line connecting two convex hulls, where each convex full encloses points 

from different classes. If two samples 1x  and 2x  from different classes are considered, 
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and projected onto the hyperplane, the margin will be the distance of these two points 

perpendicular to the hyperplane:  

1 2
2( - )⋅ =w x x

w w
.                                           (3.11) 

Hence the distance of a sample point to the margin is:  

b
( , , ) i

id b
⋅ +

=
w x

w x
w

.                                               (3.12) 

The VC-dimension of a class of separating hyperplane is linked to the margin, hence to 

the length of vector w , introducing a possibility to control it for SRM principle 

(Vaprink, 1995): 

Let R  be the sphere of the smallest radius, enclosing all training points, 

{ , }i iR X R= ∈ − <x x a , and let X∈a  be the centre of the sphere. If 

( ,b, ) sgn(( ) b)i if = ⋅ +w x w x  is the hyperplane decision function on training points, then 

the set of hyperplanes ( ,b, )if w x  has the following VC-dimension: 

2 2 1h R A≤ +  , for A≤w                                         (3.13) 

Hence, from (3.11) and (3.13) the margin, of a set of hyperplane functions, is bounded 

from below 1 1
A

≥
w

, which enables control of the VC-dimension h . If we have a 

small margin, then a much larger class of problems can be separated. Only a hyperplane 

that is farther from any sample than A1  can be a potential optimal hyperplane. 

Therefore, the number of possible planes and the capacity of a class of hyperplanes 

decreases as the margin increases (see Figure 3.5).  

The condition (3.13) on a set of hyperplanes defines a set of functions with VC-

dimension 1N + , for an N  dimensional input feature space X . Since the margin is 

bounded from below, the VC-dimension can be much smaller than N  hence allowing 

high dimensional feature space. Based on (3.9) the expected risk does not depend on the 

dimensionality of the feature space but on the VC-dimension.  

Hence, maximizing the margin is equivalent to minimizing the upper bound on the VC-

dimension, and here lies the connection between SRM principle and the optimizing 

approach in SVMs. 
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Figure 3.5: Constraints on the number of possible hyper-planes. Capacity of a class of 
hyperplanes decreases as the margin (blue circle around a sample) increases. 

The optimal hyperplane is a solution of a following optimisation problem, obtained by 

maximizing the margin 2 / w : 

2

,

1min
2bw

w                                                      (3.14) 

Subject to the constraint:  

(( ) ) 1, 1,.., .i iy b i m⋅ + ≥ =w x                                         (3.15) 

The solution of this minimization problem finds the training points for  that lie on the 

borders of the margin, circled points in Figure 3.4. It is difficult to explicitly obtain w , 

therefore the above minimization problem is solved by introducing Lagrangian 

multipliers, one for each inequality in (3.15), 0, 1,...,i i mα ≥ = : 

2

1

1( , , ( (( ) ) 1)
2

m

i i i
i

L b y bα
=

) = − ⋅ ⋅ + −∑w α w w x                  (3.16) 

Since the objective function is convex, and points satisfying constraints form a convex 

set, this is a convex quadratic programming problem ( see Appendix B, Definition B.5-

B.8). Instead of solving a primal problem (3.14), the dual problem can be equivalently 

solved by maximizing the Lagrangian so that the gradient with respect to primal 

variables b,w  vanishes subject to constraints on dual variable iα :  

,0
max (min ( , , ))

b
L b

α≥ w
w α                                        (3.17) 
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Since the problem at hand is a constrained optimization problem, the Karush-Kuhn-

Tucker (KKT) condition play a vital role (see Appendix B, Definition B.9). The 

problem of SVMs is convex, and for convex problems the KKT conditions are 

necessary and sufficient for , ,bw α  to be a solution: 

1

( , , ) 0 0
m

i i
i

L b y
b

α
=

∂ = ⇒ =
∂ ∑w α                                       (3.18) 

1

( , , ) 0
m

i i i
i

L b yα
=

∂ = ⇒ =
∂ ∑w α w x
w

                                   (3.19) 

(( ) ) 1 0, 1,..,i iy b i m⋅ + − ≥ =w x                                (3.20) 
0,i iα ≥ ∀                                                   (3.21) 

( (( ) ) 1) 0,i i iy b iα ⋅ ⋅ + − = ∀w x                                   (3.22) 

The dual problem becomes: 

1 1 1

1max ( )
2

m m m

i i j i j i j
i i j

y y
α

α α α
> = = =

− ⋅∑ ∑∑
0

x x  

1
0

m

i i
i

yα
=

=∑ , 0, 1,...,i i mα ≥ = . 

The Lagrangian multipliers are non zero values only in those saddle points where 

constraint (3.15) is exactly met, hence the condition in (3.22) is fulfilled. Only these 

points satisfying i( ) 1iy b⋅ + =x w  have non-zero iα , they define the margin and are 

called Support Vectors. The weight vector w  defines the hyperplane and can be 

explicitly obtained from the training set based on (3.19). Bias b  can be determined 

from (3.22) for any iα  different from zero. Thus, the hyperplane decision function can 

be written as: 

1
( ) sgn( ( ) )

m

i i i
i

f y bα
=

= ⋅ ⋅ +∑x x x . 

3.3.1 Generalization of the Non-separable Case 

If a classification problem is not separable but noisy with large class overlap, then a 

separable hyperplane cannot be easily constructed. In this case, classical hard margin 

classification might not lead to the minimum of the expected risk and might lead to 

over-fitting of data. As a consequence, a slack variable is introduced to relax the hard 

margin constraint (Cortes and Vapnik, 1995): 
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(( ) ) 1 , 0, 1,..,i i i iy b i mξ ξ⋅ + ≥ − ≥ =w x                             (3.23) 

One implementation of soft margin classifiers C-SVMs, considers minimizing the 

following function:  

2

, 1

1min
2

m

ib i
C ξ
=

+ ∑
w

w                                             (3.24) 

By minimizing (3.24) the SRM principle is achieved by keeping the upper bound of the 

VC-dimension small i.e. capacity of the classifier is controlled with w as in (3.13). At 

the same time the upper bound on the number of misclassified training samples 
1

m

i
i
ξ

=
∑  is 

minimized. Hence parameter C  defines the trade-off between the complexity term and 

the empirical error. When C →∞ , the problem boil down to the hard-margin SVM 

problem in which all 
1

m

i
i
ξ

=
∑  would be forced to zero. 

The dual problem in soft margin classifiers has the following form: 

1 1 1

1max ( )
2

m m m

i i j i j i j
i i j

y y
α

α α α
= = =

− ⋅∑ ∑∑ x x                            (3.25) 

0 , 1,...,i C i mα≤ ≤ =  

1
0

m

i i
i

yα
=

=∑  

The only difference between this dual problem and the same in a separable case, is the 

upper bound C  on Lagrangian multipliers. In this way a potential influence of outliers 

can be limited. Based on the KKT optimality conditions, three different cases can be 

distinguished for different values of iα : 

(1) 0iα = ⇒ (( ) ) 1i iy b⋅ + ≥w x  

(2) 0 ,i Cα< < ⇒ (( ) ) 1i iy b⋅ + =w x  

(3) i Cα = , (( ) ) 1i iy b⋅ + ≤w x  

 One of the most important properties of SVMs are sparse solutions in Lagrangian 

multipliers. Many patterns are outside the margin area and the optimal Lagrangian 

coefficients are set to zero. KKT conditions show that only patterns on the margin, case 

(2), or inside the margin area, case (3), are non-zero. In case that  Lagrangian values are 
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zeros, the patterns are classified correctly. They do not lie on the margin and therefore 

they are not SVs. The non-zero Lagrangian values iα  are those satisfying constraint 

(3.23) with the equality sign. For cases (2) and (3) with non-zero iα , the input vectors 

ix  are called SVs. However in case (3) when the corresponding SVs do not satisfy 

(3.15), these SVs are considered to be errors. 

3.3.2 Non-Linear Support Vector Machines 

In case of complex non separable data, an appropriate non-linear mapping of the input 

space into a higher dimensional feature space, may enable linear separation. In a newly 

defined non-linear space the separation boundary might by more achievable. The input 

patterns are mapped into a high dimensional feature space, Hilbert space H (see 

Appendix B, Definition B.10, B.11 and Example B.12): 

: N HΦ →\ , ( )i i→Φx x  

The same algorithm as in the linear case is consider with the input data now represented 

as: 

1 1 2 2( ( ), ), ( ( ), ),..., ( ( ), ) { 1, 1}m my y y HΦ Φ Φ ∈ × − +x x x  

The curse of dimensionality implies that as the dimension of the space N  increases so 

does the difficulty of the estimation problem. In general the required number of samples 

increases as an exponential function of N . However, learning a simpler class of 

functions in a higher dimensional feature space is the key, since the complexity of 

learned functions has more influence than the dimensionality of the space. 

In the SVM algorithm (3.25) the data appears only in a form of inner product 

,i j i j= ⋅x x x x , where ,⋅ ⋅  is a inner product operator in X . The inner product in the 

input space is replaced with inner product in Hilbert space: 

 ( , ) ( ), ( ) ( ) ( )i j i j i jK = Φ Φ = Φ ⋅Φx x x x x x                            (3.26) 

( , )i jK x x  is a kernel, a generalized non-linear similarity measure between two feature 

vectors. The inner product can be evaluated directly in the input space, by applying the 

non-linear function Φ . This is often referred to as the kernel trick (Scholkopf, 2000). 

The goal is to embed data into a Hilbert space and then seek linear relations in this 

space. 
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Mercer’s condition 1909 defines the general form of inner products in Hilbert spaces 

(Vapnik, 1995): If :K X X× → \  is a continuous and symmetric real valued function 

on Hilbert space with a squire integral function 0f ≠ , 2 ( )
X

f d < ∞∫ x x , then:  

( , ) ( ) ( ) 0i j i j i jK f f d d ≥∫∫ x x x x x x  

In that case these are the necessary and sufficient conditions to expand ( , )i jK x x  (an 

inner product in some feature space) as a uniformly convergent series on X X× : 

1
( , ) ( ) ( ), 0i j r r i r j r

r
K λ λ

∞

=
= ⋅Φ ⋅Φ >∑x x x x . 

These conditions are equivalent to ( , )i jK x x  being a positive definite kernel (see 

Chapter 4). If K  is a continuous kernel of a positive integral operator as defined by 

Mercer’s condition, there exists a mapping Φ  of an input space into a space where the 

kernel can be represented as a inner product (3.26). 

The corresponding quadratic programming problem to (3.25) is now: 

1 1 1

1max ( , )
2

m m m

i i j i j i j
i i j

y y K
α

α α α
= = =

−∑ ∑∑ x x                             (3.27) 

1
0

m

i i
i

yα
=

=∑ , 0 , 1,...,i C i mα≤ ≤ =  

Accordingly the decision function in the higher dimension feature space is: 

1
( ) sgn( ( , ) b).

m

i i i
i

f y Kα
=

= ⋅ +∑x x x  

If the kernel function satisfies Mercer’s condition the solution of a convex optimisation 

problem given in (3.27) converges and is optimal. Several kernel functions that satisfy 

mentioned conditions are presented in Table 3.1. 
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Table 3.1: Examples of most common kernel functions. 

Linear kernel  ( , ) ,i j i jK =x x x x  

Radial Basis 

Function  kernel 

(RBFK) 

2

2

( , ) exp - - ,

1 , 0
2

i j i jK γ

γ σ
σ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= >

x x x x
            (3.28) 

Laplace kernel 

(LK) 
( )( , ) exp - - , 0i j i jK γ γ= >x x x x        (3.29) 

Polynomial 

kernel  
( , ) ( , ) , 0d

i j i jK rγ γ= + >x x x x  

Sigmoid kernel  ( , ) tanh( , )i j i jK rγ= +x x x x  

3.3.3 Sensitivity to Scale 

Several ground truth databases, analyzed in Chapter 2, have various class size with 

different scales. In a retrieval applications there is a significant change in scale across  

different databases, as well as across classes within one database. Specifically in a RF 

scenario there is a strong disparity is scale between the class of interest and the rest of 

the database. 

 For a SVM classifier the scale sensitivity can be tuned up with the bound C  on 

Lagrangian coefficients or the kernel scale parameter γ . If the bound C is set to a high 

value the allowed error is very small, and in case of a RF scenario when the most 

important samples are those first retrieved it does not significantly influence 

performances. However the kernel scale parameter γ depends on the size of classes and 

it is difficult to tune up. Figure 3.6 and Figure 3.7 show behavior of the RBF kernel for 

the “chessboard” and “spiral” classification problem for different boundary values and 

kernel scale parameters, respectively. Lighter areas correspond to values of the decision 

function closer to zero; the black line is the separation boundary, and the area between 

the hyphenated lines is the margin area. SVs are those points which have black borders; 

In Figure 3.6 it is shown how increase in the boundary C reduces the number of 

misclassification errors, in case the boundary is infinity the soft classification problem 
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reduces to hard binary SVM classification. On the other hand images on the top left side 

for both datasets, have the lowest boundary value and the highest misclassification rate.  

 

C=1 2C=10

3C=10 C=∞

C=1 2C=10

3C=10 C=∞

 

Figure 3.6: The chessboard (top four images) and the spiral (bottom four images) 
classification problem, RBF kernel for a fixed scale parameter 2, ( 0.5)γ σ= =  and 

variable bounds 2 3{1,10 ,10 , }C = ∞ . Smaller C  leads to more misclassification errors. 

 

In Figure 3.7 it is shown how the scale parameter influences separation properties of 

RBF kernel. For 10σ =  the data in both chessboard and spiral dataset is under-fit and 

for 0.5σ =  the data is over-fit (see Figure 3.2) 
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10σ = 1σ =

0.5σ = 0.1σ =

10σ = 1σ =

0.5σ = 0.1σ =

 

Figure 3.7: The chessboard (top four images) and spiral (bottom four images) 
classification problem, RBF kernel for a hard margin SVM problem with no errors 

allowed C = ∞  and variable kernel scale parameter {10, 1, 0.5, 0.1},σ =  
{0.05, 0.5, 2, 50}γ =  

3.3.4 Optimisation techniques for SVMs 

Solving the SVM optimisation problem given in (3.27), under the given constraints, is a 

quadratic convex optimisation problem with local minimum being at the same time a 

global minimum. Even though this problem can be solved using classical quadratic 

optimisation approaches specially develop algorithms can be used to allow fast 

convergence. 
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Chunking (Vapnik, 1982) is an approach that exploits the sparsely of the solution for α  

and the KKT conditions. At every step the problem containing non-zero iα  and some 

violating KKT conditions is solved. The size of the problem varies, and eventually it is 

reduced to the number of non-zero coefficients. This approach is suitable for large 

problems, however it is limited with maximal number of SVs that it can handle and 

requires a quadratic optimizer to solve the smaller problems. 

Decomposition method (Osuna et al., 1997) solves a large quadratic problem by 

decomposing it into a sequence of small quadratic problems, with a fix size of sub-

problems. As long as an example violates the KKT conditions it is added to the 

examples from previous sub-problems. In the end the sequence converges to an optimal 

solution. At each iteration one sample is added and removed; this allows arbitrary large 

training set however the convergence rate is low. And a quadratic optimizer is still 

necessary for solving the sub-problems.  

Sequential Minimal Optimisation (SMO) proposed by Platt (1999a) can be viewed as a 

variation of the decomposition method. In each iteration a quadratic problem of size two 

is solved, since this can be done analytically there is no need for a quadratic optimizer. 

However the problem is how to choose good pair of variables to optimize in each 

iteration. This has been the method of choice in this work, and the algorithm 

implemented is an improvement of the initial Platt’s idea (Keerthi et al., 2001). It is 

explained in more details in Appendix C. 

 

3.3.5 Evaluation Results 

In this part, the performances of several kernels with respect to changes in the scale 

parameter are compared. Sensitivity to changes in scale is very important when using 

RF with a generic image database, because the image classes may have different scales. 

Experiments on several ground truth databases show changes in effectiveness for 

different kernels.  

 Two classical kernels were considered, the RBFK and LK from Table 3.1. The RBF 

kernel is highly sensitive to scale parameter, and LK was proposed by Chapelle et al. 

(1999) for CBIR with RF. The third kernel is our adaptive convolution kernel (ACK) 

detailed in Chapter 4, and used here to investigate its sensitivity to scale. The 

experiment were performed on all six databases from Chapter 2 (for visual preview see 
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Appendix A) by varying the values for the scale parameter. In Figure 3.8-Figure 3.10 

mean precisions over all classes for different values of the scale parameter γ  (gamma), 

for each database from section 2.5.1 are shown. Sensitivity of the presented kernels to 

the changes in the scale parameter γ  shows that depending on scales of the classes 

present in different databases each kernel has an optimal value. There is a huge 

instability in performances of both RBFK and LK  specially when the scale parameter is 

larger than 10, whiles the proposed kernel ACK kernel shows higher stability even 

though not highest precision for all values of γ . 

 

 

Figure 3.8: Mean precision  depending on the scale parameter for SVMs (DColour and 
VisTex database). 

 

 

 

Figure 3.9: Mean precision  depending on the scale parameter for SVMs (D8 database 
and D25-1800 database). 
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Figure 3.10: Mean precision  depending on the scale parameter for SVMs ( D7-700 and 
Caltech 101 database). 

In real life applications, the scales of the user-defined classes cannot be known in 

advance therefore considerable variations performance of RF-based retrieval systems 

can be expected. For that reason selecting a kernel that is more scale-invariant is 

desirable for any RF system. 

Comparisons between the two classical kernels RBFK and LK are shown in the 

following part of this sub-section (Figure 3.11-Figure 3.15). For the two mentioned 

kernels the most positive selection strategy was used (Ferecatu et al., 2004). Various 

descriptors or descriptor combinations, as in section 2.5.5 were also analyzed in 

conjunction with SVMs. The descriptors are either individual descriptors or  normalized 

concatenations for CLD and EHD (denoted as CLEH),  CSD and EHD (denoted as  

CSEH), as well as all the descriptors together, except DCD (denoted as CONC). 

Though there is no mathematical justification for simple feature concatenations (see 

Chapter 4), Chapelle et al. (1999) have experimentally proven that feature combinations 

usually perform better then individual descriptors. For both kernels the scale parameters 

were set to their optimal values for a particular database.  

The VisTex database was excluded form these experiments since some of the classes 

are of very small size and are not suitable for RF approaches with at least 10 samples 

added in each iteration. Please note that comparisons to the newly devised kernel ACK 

are presented in the following chapter along with a detailed description of the kernel 

itself. 

The search sessions were initialized with three randomly chosen sets with six labeled 

image, half for relevant samples and half for irrelevant samples. The target of each RF 
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session is to find all images in a class based on the initial relevant set. The user is 

presented with images that have the highest certainty of being positive “most positive”. 

Each relevance feedback session has four to five iterations. Precision within the 

returned samples size equaling to the class size is measured. In the ideal case the system 

would return all relevant images and obtain recall value of one. Average precision over 

all classes for a particular database provides a measure of how well the relevance 

feedback system performs through iterations, in a category search scenario. 

 

 

Figure 3.11: Average precision trough iteration for RBFK (left) and LK (right), for the 
DColour image database. 

For the DColour database (see Figure 3.11) with classes based on low-level visual 

features (e.g. red, blue, yellow, green, and orange), as expected the descriptor 

combinations fail to give good precision results and winning performance is obtained 

for SVMs with only colour features. However, this type of databases are not real world 

databases, they were just used to confirm effectiveness of SVMs in image based RF 

methods.  

 

 

Figure 3.12: Average precision trough iteration for RBFK (left) and LK (right), for the 
D8 image database. 
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Figure 3.13:  Average precision trough iteration for RBFK (left) and LK (right),  for the 
D25-1800 image database. 

 

Figure 3.14: Average precision trough iteration for RBFK (left) and LK (right),for the  
D7-700 image database. 

  

 

 
Figure 3.15: Average precision trough iteration for RBFK (left) and LK (right),  for 

Caltech 101 image database. 
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For the rest of the databases with “more” semantically meaningful classes (see Figure 

3.12- Figure 3.15) SVMs in combination with concatenated descriptors mainly give 

highest performances over all iterations as expected. 

In the next paragraph precision-recall curves are presented. The precision values are 

averaged over same relative scopes, that is the ratio of the relevant retrieved images and 

the size of that class. Here the aim is to show how more training information influences 

the results of SVMs through iterations. Since it is difficult to show all results, only the 

result for the database that is closest to real world databases  D7-700 database (see 

Appendix A, Figure A. 5) is presented.  

Both for RBFK Figure 3.16 and LK Figure 3.17 average precision-recall curves for a 

combination of multiple descriptor perform better then for an individual feature. 

However, in both  cases the precision-recall curve at bottom right of each figure 

representing precision-recall over  different iterations  does not show a conclusive 

improvement. That is more training samples does not necessarily improve the quality of 

results.  

Since both, the feature space and the learning method have been investigated, the way 

of improving performances is to adapt one to another, that is to improve the learning 

approach to obtain as much as possible relevant information from the available features, 

and ignore the nosy data. This is the subject of Chapter 4. 
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Figure 3.16: Average precision-recall curves for RBFK over all categories. Five 
iterations (top to bottom, left to right). Comparative results through iterations for the 

best performing feature CONC are given in the bottom right corner. 
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Figure 3.17: Average precision-recall curves for LK over all categories. Five iterations 
(top to bottom, left to right). Comparative results through iterations for the best 

performing feature CONC are given in bottom right corner. 
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CHAPTER 4 : A Multi-feature Scenario for 

Relevance Feedback  

4.1. Adaptive Convolution Kernels in Multi-feature Spaces 

 Since no single descriptor is able to represent all the properties and patterns 

encapsulated in natural images, the combination of several descriptors appears to be a 

sensible strategy to increase their discrimination power and classification properties.  

Several approaches for image retrieval are based on distance re-weighting, by exploiting 

relevance feedback from the user. The evolution of these learners for RF is presented in 

Chapter 3. In the approach proposed by Jing et al. (2004) regions are combined in 

image-to-image similarity by using Earth Mover’s Distance and SVMs. However the 

mathematical aspect of positive–definite kernels for SVMs that guarantees convergence 

and uniqueness of the optimisation problem has not been analyzed. Chapelle et al. 

(1999) also obtained promising results when using global image features and SVMs. 

The authors show improvements when introducing different similarity measures but 

acknowledge the lack of proof for positive definiteness of several used kernels.  

In order to effectively approach the problem, a new kernel based on specific distances 

for different feature subspaces is presented. The new kernel exploits the nature of the 

data and weights differently each feature subspace. The kernel can be dynamically 

adapted to user preferences when applied in a relevance feedback scenario. To assure 

convergence of the optimization problem in SVMs and uniqueness of the obtained 

solution, positive definiteness of the proposed kernel is analyzed. 
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4.1.1 Feature Subspaces, Similarity Measures  

 

A number of different feature can be extracted from image content in order to obtain 

information at various levels of abstraction. Te goal is to as much as possible simulate 

human visual perception and extract information that could allow higher levels of  

conceptual abstraction. 

The difficulty of the problem rises from generic and intrinsically different nature of 

visual descriptors. They are usually formed using a number of different algorithms and 

they have individually specific syntax. The underling consequence is that different 

descriptors ‘live’ in completely different feature space with their own similarity 

measures. Though their extraction, representation, statistical behaviour and similarity 

measures are designed, as much as possible, to simulate human perception, they do not 

naturally and straightforwardly mix into a meaningful combination.  

In this approach, the descriptors introduced in Chapter 2 were considered. The multi-

feature space for images is defined as a structured data space out of the following low-

level descriptors: CLD, CSD, DCD, EHD, HTD, HSV histogram space and GLCM.  

Note that the first five descriptors are MPEG-7 standard descriptors. Some of the 

descriptor components are colour space values of histograms e.g., CLD, CSD, some of 

them include statistical moments of the coefficient e.g., HTD, GLCM. Hence the metric 

space induced for each descriptor tries to exploit the specific syntax and physical nature 

of the coefficients obtained. The distance between MPEG-7 descriptors is estimated 

using metrics recommended by the non-normative part of MPEG-7 standard, 

specifically specified for retrieval and browsing applications. For the rest of the 

descriptors the distances were designed to suit their syntax based on the feature 

extraction procedure.  

In this section we give a brief summery of the distance measures used for each 

descriptor, as explained in Chapter 2, this is done through introducing the following 

notation.  

Let ( ) , 1,..,lX l L=  be a feature space endowed with a similarity measure ( )ld . Where 

L  is the number of different feature spaces. Observe that ( )ld  is a distance function, in 

case ( )ld  is a metric the feature space ( ) ( )( , )l lX d becomes a metric space. Let ( )l
ix  be a 
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i -th vector element of ( )lX  with dimension ( )( )lN X . The dimension of the feature 

space ( )( )lN X  depends on the space itself . The superscript of the feature space, and its 

elements are not important in case only an individual feature space is considered, hence 

in these cases for simplicity of notation it can be neglected, then i X∈x , 

,1 ,2 ,[ , ,..., ]i i i i Nx x x=x . 

The mentioned descriptors ad their distances are: 

▪  CLD, the distance function is the recommended MPEG-7 distance (2.11): 

3 2
, ,1( , ) ( )

i

cld i j rs i s j sr
s S

d a x x=
∈

= ⋅ −∑ ∑x x .                 (4.1) 

 Where rsa  are weights for different components in the YCrCb colour system. And   

iS  is a set of free parameters enabling various numbers of coefficients for each of 

the three components. 

▪ CSD, the distance metric is normalized 1L  distance: 

  , ,( , ) i r j r
csd i j

r

x x
d

a
−

=∑x x .                                             (4.2)   

▪  DCD, the feature vector is made up of 4-touples of elements, , ,{( , )}i i r i rx=x c , 

1,..., ( )ir N= x , where ,i rc  is the r -th 3-dimensional colour component in RGB 

colour system, ,i rx  is the percentage of pixels that have corresponding colour values 

for the r -th dominant colour. This feature space is not a conventional vector or even 

metric space. Furthermore, the dimension of each feature ( )iN x  is variable. The 

distance measure for the DCD is the quadratic form given as in (2.14): 

1 2( )( )
2 2

, , , ,
1 1

( , ) ( 2 )
ji NN

dcd i j i r rr j s ss i r j s rs
r s

d x a x a x x a
= =

⎛ ⎞
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠
∑ ∑

xx
x x .               (4.3) 

Here, 0 1rsa< ≤  is the similarity coefficient between two colours.  

▪ EHD, the distance is a sum of 1L  distances over the original features, as well as 

global ( )gx ⋅  and semi-global ( )sx ⋅  histograms values (see Figure 2.3): 
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79 4 64
, , , ,, ,0 0 0( , ) 5 g g s s

ehd i j i r j r i r j ri r j rr r rd x x x x x x= = == − + ⋅ − + −∑ ∑ ∑x x .         (4.4) 

 

▪ HTD, the distance metric is normalized 1L  distance: 

, ,( , ) / ( )htd i j i r j rrd x x a r= −∑x x                                    (4.5) 

Here ( )a r  stands for normalizing standard deviation of appropriate features 

components. 

▪ HSV histogram, the distance metric is histogram intersection  

, ,( , ) 1 min( , )hsv i j i r j rrd x x= −∑x x ,                                            (4.6) 

▪ GLCM, the metric is a typical 2L  metric with the values of all coefficients 

normalised over the database, where ( )a r  are column wise normalisation 

factors: 

1/ 22
, ,( , )

( )
i r j r

glcm i j
r

x x
d

a r

⎛ ⎞−⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑x x  .                                (4.7) 

It is apparent that for instance even though GLCM coefficients have higher syntactical 

meaning, the 2L  norm is still used risking that the underlining meaning of particular 

coefficients loses meaning. Hence it is important not only to develop descriptors that 

would as much as possible simulate human understanding of content but also to develop 

the measures used for human based retrieval and browsing scenario.  

The problem at hand is how to combine presented distance functions since the result of 

each distance is a scalar value representing a level of similarity for that low-level 

primitive. To sensibly combining the descriptors a logical distance measures in line with 

the particular syntax of each descriptor needs to be used. Since it is difficult to assume 

levels of importance for each of the features a linear combination of individual metrics 

is a straightforward way to obtain similarity in the joint feature space. 

Now, let (1) (2) ( )... LX X X X= × × ×  denote a Cartesian product of L individual feature 

spaces, and an element of that space i X∈x , where (1) ( )[ ,.., ]L
i i i=x x x . Here 1,...,i m=  
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is the number of elements in the joint feature space X . The distance between feature 

vectors ca be denoted as follows: 

( ) ( )( )

1
( , ) ( , )

L
l ll

i j l i j
i

D dω
=

=∑x x x x ,                                 (4.8) 

Here ( )ld  represents one of the distance from (4.1)-(4.7), in the feature space ( )lX , and 

as mentioned L  is the number of feature spaces. The weights lω  are updated based on 

user relevance feedback as explained in the next paragraph. 

The learning approach for RF is based on SVMs. A kernel based on linear combination 

of distances (4.8) is analyzed. It exploits the nature of the data and weights differently 

each feature subspace. Weights for each feature sub-spaces within the kernel are 

dynamically calculated from the intrarclass variance of user’s feedback. 

The weights lω  are calculated from elements labelled as relevant and irrelevant by the 

user, since SVM is supervised statistical learning approach. Hence, 

( ) ( )l l
l neg posVar Varω = .                                                  (4.9) 

Normalized to
1

1
L

l
l
ω

=
=∑ . If positive examples have some commonality in low-level 

feature, the variance of distances ( )l
posVar  is small. In that case the weight to that distance 

measure is large. However if the negative examples have also small variance ( )l
negVar  

then that distance does not have good discriminative properties and the weight is 

lowered. Instead of fixing the weighting factors based on the input, the approach keeps 

updating through iterations. 

 Therefore by embedding the distance function into a classical kernel, the new kernel  is 

modelled not only to follow the rules and nature of the patterns used but also to learn 

over time a better representation of similarity for the structured data based on user’s 

feedback. However to guarantee convergence of the optimization problem in SVMs as 

well as uniqueness of the obtained solution, the proposed kernel is analyzed in the 

following section. 
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4.1.2 Positive Definite Property of Kernel Functions 

Whilst the basic algorithms for SVMs (Chapter 3) are theoretically well defined, finding 

optimal representation of real life data e.g. natural images and appropriate kernel based 

similarity matching is still an open issue. SVMs are optimal hyperplane classifiers 

acting over a well-defined inner product in feature space X .  

 In order to obtain a separable classification problem in a feature space, many 

dimensions have to be added to the input data. Kernels perform mapping of boundary 

between classes, from feature space X  into a non-linear separable bound in a higher 

dimensional feature space. Given a symmetric positive kernel ( , )i jK x x  Mercer’s 

theorem indicates that there exist a mapping Φ : 

( , ) ( ), ( )i j i jK = Φ Φx x x x .                                         (4.10)  

For a kernel satisfying the assumptions of Mercer’s theorem the expression in (4.10) 

holds true. This theorem states that the kernel needs to be symmetric positive definite to 

guarantee convergence of the convex optimisation problem and thus uniqueness of the 

global solution (e.g., optimisation problem in SVMs (3.27)) . 

Definition 4.1: A real valued kernel :K X X× → \  is positive definite (PD) if and 

only if K  is symmetric ( , ) ( , )i j j iK K=x x x x , for all ,i j X∈x x  and 

, 1
( , ) 0

m

i j i j
i j

c c K
=

≥∑ x x  

for , , , , 1,...,i im N c X i m∈ ∈ ∈ =x\ . 

To imply a direct connection between Mercer’s theorem  (see Chapter 3) and PD 

kernels let [ , ]X a b=  be a compact interval and let :K X X× → \  be continuous and 

symmetric real valued function then K  is positive definite kernel if and only if  

( ) ( ) ( , ) 0
b b

i j i j i j
a a

f f K d d ≥∫ ∫ x x x x x x  

holds for all continuous functions :[ , ]f a b →\ . 

Though this shows how positive definite kernels are suitable for SVM, a relaxation of 

PD property for convexity of SVMs was presented through a family of conditionally 

positive definite kernels (Scholkopf, 2000). 
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Definition 4.2: A real valued kernel :K X X× → \  is conditionally positive definite 

(CPD) if and only if K  is symmetric ( , ) ( , )i j j iK K=x x x x , for all ,i j X∈x x and  

, 1
( , ) 0

m

i j i j
i j

c c K
=

≥∑ x x for , im N c∈ ∈\  , , , 1,...,i X i m∈ =x  

 with constraint 1 0m
ii c= =∑ . 

Berg et al. (1984) considered a link between PD kernels and CPD kernels, and the 

possible application to SVM design, as given in the following proposition. 

Proposition 4.3: Let K  be a symmetric kernel on X X×  then 

0 0 0 0
ˆ ( , ) ( , ) ( , ) ( , ) ( , )i j i j i jK K K K K= − − +x x x x x x x x x x                  (4.11) 

 is PD if and only if K  is CPD kernel. 

It is necessary to show that CPD kernels are sufficient to enable convexity of the 

following SVM optimisation problem. Let ˆ ( )i jK ⋅x x  be a  PD kernel, then SVM 

optimisation problem is : 

1 1 1

1 ˆmax ( )
2

m m m

i i j i j i j
i i j

y y K
α

α α α
= = =

− ⋅∑ ∑∑ x x  

1
0

m

i i
i

yα
=

=∑ , 0 , 1,...,i C i mα≤ ≤ = . 

Based on previous proposition and condition 
1

0
m

i i
i

yα
=

=∑ ,  

1 1 1

0
1 1 1 1 1

0

0 0 0
1 1 1 1

0 0 0

1

1 ˆ ( )
2

1 1( , ) ( , ).
2 2

1 1( , ) ( , )
2 2

1
2

m m m

i i j i j i j
i i j

m m m m m

i i j i j i j j j i i i
i i j j i

m m m m

i i j j j i i j j
i j i j

m

i i
i

y y K

y y K y y K

y y K y y K

α α α

α α α α α

α α α α

α α α

= = =

= = = = =

= = = =

=

− ⋅

= − +

+ −

= −

∑ ∑∑

∑ ∑∑ ∑ ∑

∑ ∑ ∑ ∑

∑

x x

x x x x

x x x x

��	�


��	�
 ��	�
��	�


1 1
( , ).

m m

j i j i j
i j

y y K
= =
∑∑ x x
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Hence, the optimisation problem defined with CPD kernels can be re-written so it is 

expressed through PD kernels, only. Therefore the use of CPD kernels in SVMs is 

equivalent to using corresponding PD kernels.   

Furthermore the class of kernels on a set is closed under properties of addition, 

multiplication by a positive constant, product and pointwise limits (Haussler 1999). 

4.1.3  Adaptive R-convolution Kernels 

R-convolution kernels have been introduced by Haussler (1999) leading to a new class 

of kernels on structured data. Let ( ), 1lX l L≤ ≤  be separable non-empty metric spaces 

and ( )
1

L l
lX X==∪  a composite structure. Decomposition of structured data object 

X∈x  is specified with relation R  into a finite set of tuple sub-components. 
(1) ( )(( ,..., ), )LR x x x  indicates decomposition of x  into components 1,..., Lx x , with 

( )l
l X∈x  and accompanying kernels 1,..., LK K  for every component. Hence the set of 

all possible decomposition of x  is given by 1( )R− x . 

Let R  be a decomposition structure for a particular structure data type on a set X ,  

,i j X∈x x are decomposition into (1) ( )( ,..., )L
i i i=x x x , (1) ( )( ,..., )L

j j j=x x x . For each of the 

subcomponents ( ) ( ),l l
i jx x  the measure of similarity is given with kernel 

( ) ( )( , )l l
l i jK x x defined on ( )lX . The associated convolution kernel is defined as: 

1 1

( ) ( )

1( ) ( )
( , ) ( , )

i i j j

L
l l

R i j l i j
lR R

K K
− − =∈ ∈

= ∑ ∑ ∏
x x x x

x x x x                      (4.12) 

Now all the necessary elements are obtained to define the adaptive convolution kernel 

(ACK) in respect to specific descriptor syntax. The multi-feature space can be defined 

as a structured data space out of a number of descriptor spaces. Every feature is a 

structured data vector, formed by combining simpler components into a complex 

representation. The decomposition structure is given as ( ){ }, 1,...,l
i i i L= =x x , with 

every element being a vector on its own  of dimension im ,  ( ) ( ) ( )
,1 ,( ,..., )

i

l l l
i i i m=x x x . As 

mentioned in previous section the dimension depends on the nature of the feature space.  
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The following theorem is needed to prove that the convolution kernel satisfies required 

conditions to be a PD kernel. For the proof the reader is referred to Haussler (1999) 

Theorem 4.4 [R-convolution kernels]: If 1 2, ,..., LK K K  are PD kernels on 

1 1 2 2, ,.., L LX X X X X X× × ×  and R  is finite decomposition on X  then convolution 

1 2 LK K K⋅ ⋅ ⋅…  is a PD kernel on X X× . 

It is expected that the complex nature of the patterns in images can be learned over time 

when using the combined distance function (4.8). Clearly, this distance function can be 

embedded in any classical kernel. In the sequel the exponential kernel will be used for 

the SVM based learning approach. This kernel is referred to as adaptive convolution 

kernel (ACK)(Djordjevic and Izquierdo, 2006c): 

( , ) exp( ( , ))i j i jK Dρ= −x x x x                                         (4.13)  

where ( , )i jD x x  can be any distance and ρ  is a positive constant multiplier. However 

without further analysis the kernel presented in (4.13) does not necessarily satisfies 

positive definiteness conditions of Mercer’s theorem. By using the decomposition 

structure defined for convolution kernel (4.12) the following expression is obtained: 

( ) ( )( )
1 2

1
( , ) exp( ( , ))

L
l ll

i j l Li j
l

K d K K Kρ ω
=

= − ⋅ = ⋅ ⋅ ⋅∑x x x x …             (4.14)  

( , )i jK x x  from (4.14) is a convolution PD kernel if the individual components satisfy 

conditions to be PD kernels, based on Theorem 4.4 . Using the following few theorems 

and proposition positive definiteness for the particular descriptor combination from 

S4.1.1 is proven. 

Theorem 4.5: K  is CPD kernel over XX ×  if and only if )exp(uK  is PD for all 0>u   

Proof: If exp( )uK  is PD, then knowing that a class of kernels is closed under pointwise 

limit, 
0

1lim exp( )
t

K uK
t→ +

=  is PD and also CPD. If ( , )i jK x x  is CPD and ˆ ( , )i jK x x is PD 

kernel, based on (4.11) and 1 0m
ii c= =∑  for CPD kernels, then: 
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N

N NN

0
1 1 1 1 1 1

0

0 0 0
1 1 1 1
0 0 0

1 1

ˆˆ ˆexp( ( , )) exp( ( , )) exp( ( , ))

exp( ( , )) exp( ( , ))

ˆˆ ˆ exp( ( , )) 0

m m m m m m

i j i j i j i j j i
i j i j j i

m m m m

i j j i j
i j i j

m m

i j i j
i j

c c uK c c uK c uK

c c uK c c uK

c c K

= = = = = =

= = = =

= =

= + −

+ − +

= ≥

∑∑ ∑∑ ∑ ∑

∑ ∑ ∑ ∑

∑∑

x x x x x x

x x x x

x x

 

Hence )exp(uK  is PD kernel.  █ 

Proposition 4.6: If K  is a negative function 0K ≤ , and CPD kernel then 

( ) , 0 1K α α− − < <  is also CPD.  

From Berg et al. (1984) it follows that  10
( ) ( 1)

( 1)
K dK eα λ

α
α λ
α λ

∞
+− − = −

Γ − ∫ . Assuming 

that K  is CPD and based on Theorem 4.5, Keλ  is CPD; the right hand side is now a 

sum of CPD kernels and hence it is a CPD kernel itself. 

In order to prove that the proposed kernel in (4.14), is PD the following corollary is 

used to build valid kernels out of presented similarity measures.  

Corollary 4.7: Let K  be a symmetric, negative kernel : ( ,0)K X X× → −∞  which is 

also conditionally positive definite (CPD), then  

exp( ( ) )K αρ− ⋅ − 0 1, 0α ρ< < >                                          (4.15) 

is a PD kernel. The proof is implicitly derived from Theorem 4.5 and Proposition 4.6. 

Positive Definite Kernel based on L2 distances 

In this section positive definiteness of cldK  and glcmK  kernels is proven. These kernels 

were formed by replacing the distance metric for CLD and GLCM from (4.1) and (4.7), 

into individual kernels from (4.14), designed based on Corollary 4.7 and 2L  distance. 

Positive definite kernels can be considered to be a nonlinear generalisation of the 

simplest similarity measure, the inner product , , , n
i j i j ∈x x x x \ . A norm on a space 

X  can be defined based on a strict inner product as : 
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2 ,=x x x                                                      (4.16) 

In this case the associated distance between two vectors is given as 
2

2
( , )i j i jd = −x x x x . In case of GLCM descriptor the distance given in (4.7) is inferred 

from 2L  norm. Based on (4.15) the aim is to prove that an exponent of negative 2L  

distance is CPD. Though this is a trivial case it is important to describe it for the 

completeness of the approach. 

Initially the kernel defined with a negative value of squared distance of the norm from 

(4.16), 
2

( , )i j i jK = − −x x x x  , needs to be symmetric, negative and CPD. Indeed it is 

symmetric
22( , ) ( , ) 2 ,i j j i i i j jK K= = − + −x x x x x x x x , and CPD with the 

condition 1 0m
ii c= =∑ : 

22

, 1 1 , 1 1 , 1
( , ) 2 , 2 , 0

m m m m m

i j i j i i i j i j j j i j i j
i j i i j j i j

c c K c c c c c c
= = = = =

= − + − = ≥∑ ∑ ∑ ∑ ∑x x x x x x x x  

The third necessary property is that it is negative: 
2

( , ) 0i j i jK = − − ≤x x x x . 

Therefore based on these three properties and Corollary 4.7 , the following kernel is PD: 

2

2

exp( ( ) ) exp( ( ( )) )

exp( ) exp( )

i j

i j i j

K α α

α β

ρ ρ

ρ ρ

− ⋅ − = − ⋅ − − − =

= − ⋅ − = − ⋅ −

x x

x x x x
  

0 1 0 2, 0α β ρ< < ⇒ < ≤ >  

glcmK  is a version of this kernel and hence it is a symmetric positive definite kernel for 

1β = : 

( , ) exp( )i j i jK ρ= − ⋅ −x x x x                                 (4.17) 

In the case of CLD, cldK  represents a convolution of 3 kernels, since this feature space 

is further decomposed into 3 subcomponents based on cldd  from (4.1). The kernel for 

CLD is given as:  
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( )( )1 ,1 ,1 2 ,2 ,2 3 ,3 ,3

,1 ,2 ,3

( , ) exp( ( , ))

exp

cld i j cld i j

i j i j i j

cld cld cld

K d

a a a

K K K

ρ

ρ

= − ⋅

= − ⋅ − + − + −

= ⋅ ⋅

x x x x

x x x x x x            (4.18) 

Here , 1: 3ia i =  are constants; terms above are of form (4.17). Furthermore (4.18) is a 

positive definite kernel as convolution of three PD kernels. 

Positive Definite Kernel based on L1 distances 

Kernels for CSD, EHD, and HTD are based on the distance metrics from (4.2) , (4.4), 

(4.5) which are versions of 1L  norm. These kernels ,csd ehdK K  and htdK  are induced 

with Corollary 4.7 and 1L  distance. 

Lemma 4.8 : Let :K X X× → \  be a symmetric function then 

( , ) exp( )i j i jK = − −x x x x                                       (4.19) 

is a PD kernel. Here where ⋅  denotes the 1L  norm. 

Proof: Let :K X X× → \  there exist m  vectors of dimension N , 

, 1,....,N
i i m∈ =x \ . An element of matrix K  at position ( , )i j  is 

( , )ij i j i jK K= = − −x x x x , negative value of the 1L  distance. Furthermore 

, , , 2ij r i r j rK x x= − −  is Euclidian distance 2L  on scalar components  , ,,i r j rx x  for 

1,...,r N= . Where ,i rx  denotes the r -th coordinate of vector ix . It can be noticed that 

,
1

N

ij ij r
r

K K
=

=∑ . Based on discussion in previous section 2 2L i jK = − −x x  is a 

conditionally positive definite kernel. Therefore a sum of CPD kernels is a CPD kernel. 

To assure that the kernel matrix K  is not singular, a strictly positive definite function as 

an exponent is used: 

( , ) exp( )i j i jK ρ= − −x x x x  

Based on Theorem 4.5 an exponent of a CPD kernel is a PD kernel, hence so is the 

above kernel. For more details  the reader is referred to Baxter (1991). █ 
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Therefore csdK  and htdK  are PD kernels as forms of the kernel given in (4.19). For the 

case of EHD, the expression for ehdd  in (4.6) has an additional transformation on the 

input feature space into a global and semi-global histogram spaces. However this does 

not influence the kernel for Mercer’s condition, only the input space. Therefore based 

on previous discussion ehdK is also a symmetric PD kernel. 

Positive Definite Kernel based on Quadratic distance 

Finally, the DCD distance, leads to a non-trivial kernel based on quadratic similarity 

measure (Djordjevic and Izquierdo, 2006b) . 

Proposition 4.9: The kernel induced by the quadratic distance dcdd  from (4.3) on the 

DCD feature space is PD.  

Let’s define a mapping from the DCD feature space into the N -dimensional feature 

space X̂ , for 
,

max( ( ) ( ))i j
i j

N N N= ⋅x x . That is, each pair of features ,i jx x  is mapped 

into a pair of vectors ˆ ˆ,i jx x  padded with zeros if ( ) ( )i jN N N⋅ <x x :  

,1 ,1 , ( ) , ( ) ,1 , ( ) ,1 , ( )

( ) ( )

( )

ˆ ˆ[ ], [ ].
i i j j

j j j

i

i i i i N i N j j j N j j N

N N

N

x x x x x x x x
× ×

×

= =x x x x

x x x

x

x x… … … … … …
��	�
 ���	��
 ���	��


������	�����


 

Now, dcdK  can be written as: 

1/2ˆ ˆ ˆ ˆ( , ) exp( ( ( , )) )dcd i j i jK K= − −x x x x� ,                                          (10) 

where ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ( , )
T

i j i j i jK A= − − −x x x x x x� , A  is the cross-similarity matrix between 

feature components of size N N×  and its elements are cross-similarity coefficients 

0 1rsa< ≤  from (4.3) .Based on Corollary 4.7 to prove that dcdK  is PD kernel, it is 

enough to show that K�  is negative and CPD. Clearly, K�  is negative 

since
2

ˆ ˆ ˆ ˆ( , ) 0i j i jK < − − ≤x x x x� . Moreover, it is straightforward to verify that: 
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P P0 0

2 2

, 1 1 1 1 1 1 1

2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ( , ) 2 ,

ˆ2 0.

m m m m m m m

i j i j j i i i j j i i j j
i j j i i j i j

m

i i
i

c c K c c c c a c c

a c

= = = = = = =

=

=− − + ⋅

= ⋅ ⋅ ≥

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑

x x x x x x

x

�

. 

Thus, K�  is CPD and dcdK  PD kernel.  █  

Positive Definite Kernel based on Histogram Intersection distance 

 In case of HSV descriptor, it is necessary to prove that the following kernel hsvK  is 

PD:  

( , ) exp( ( , )) exp( (1 min( , )))hsv i j hsv i j i jiK dρ ρ= − ⋅ = − ⋅ −∑x x x x x x        (4.20)  

Shawe-Taylor and Cristianini (2004) defined an intersection kernel as a kernel on a set 

of subsets of a measurable set X  (Appendix B, Definition B.13-B.16). In a finite case 

like in the one of HSV descriptor, the measure is a mapping to positive real numbers 

whilst in the case X  is infinite this assumes measurable sets and σ -algebra. 

Integration over the set X  is defined for a measurable function f  as (Royden, 1988): 

( ) ( ) ( )f f x d xµ µ= ∫X  

For indicator function XI  on a measurable set X , which is ( ) 1XI x =  for x X∈  and 0 

otherwise, the measure is define as: 

( ) ( )XX Iµ µ += ∈\  

Definition 4.10: Intersection kernel can be defined on a subset of measurable set X , as 

a measure of the intersection of two sets 1 2,X X ∈X : 1 2 1 2( , ) ( )IK X X X Xµ= ∩ . 

The feature space of all measurable functions has the inner product defined as: 

1 2 1 2, ( ) ( ) ( )f f f x f x d xµ= ∫X . 

In this non-vector space the feature mapping is : XX IΦ → . Since 
1 2 1 2X X X XI I I∩ = ⋅ : 

1 2 1 2 1 21 2 1 2

1 2

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ), ( )

I X X X X X XK X X X X I x d x I x I x d x I I

X X

µ µ µ∩= ∩ = = =

= Φ Φ
∫ ∫X X  
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Hence the intersection kernel is a valid kernel. 

 In case of real numbers, ix  and jx  represent sets in ranges [0, ]ix  and [0, ]jx , (e.g., 

histogram bins). The intersection kernel with a standard integration measure is a PD 

kernel with normalization:  

( , ) min( , )hi i j i jK =x x x x  

Since in (4.20) the normalization is done beforehand on the distance function level, the 

following kernel for the histogram intersection can be obtained: 

( , ) . exp( min( , )) . exp( ( , ))hsv i j i j hi i jiK const const Kρ ρ= ⋅ ⋅ = ⋅ ⋅∑x x x x x x       (4.21) 

 Since as mentioned exponential functions can be approximated by polynomials with 

positive coefficients and polynomials are well-defined class of kernels. Considering the 

class of kernels is closed under point wise limits, (4.21) being a limit on positive 

definite polynomial kernels is a positive definite kernel itself. In a alternative approach 

Boughorbel et al. (2005), defined a generalized histogram intersection considering 

directly real numbers. 

 

This proposition along with the previous analysis and discussions enables the use of the 

proposed kernel to drive a SVM based learning approach. In this case, convergence and 

uniqueness of the underlying optimisation problem is guaranteed. 

4.2. Evaluation Results 

In our specific problem the subcomponent dimensionalities are dependant on nature of 

the feature spaces from Chapter 2. For a specific combination of descriptors the 

dimensionalities are given in Table 4.1. 

Table 4.1: Dimensions of individual  feature spaces 

Descriptor CLD CSD DCD HSV EHD HTD GLCM 

Dimension 58 32 variable 62 80 32 4 

 

The experimental setup is similar to the one in previous chapter, however the ACK 

kernel and individual kernels from (4.14)  are included into the comparison, together 

with classical Gaussian kernel (RFBK) and Laplace kernel (LK). 
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For RBFK and LK the descriptors are either individual descriptors or normalized 

concatenations CLEH, CSEH, as well as CONC. For the individual kernels  based on 

distances (denoted as KCLD, KCSD, KDCD, KHSV, KEHD, KHTD, KGLCM) 

appropriate single descriptors were used. The proposed ACK kernel is defined on 

structured spaces of all seven descriptors with weights based on relevant and irrelevant 

training samples of the supervised user feedback.  

The initial training set has 6 training examples 3 labelled as relevant and 3 as irrelevant, 

in each iterations appropriately labelled samples, from the retrieved user interface are 

added (10 per iteration). For each kernel three independent random runs were performed 

and the averaged results used in the analyses. Each relevance feedback session is 

followed for 4 iterations and the precision measured within a window of size equal to 

the class size. 

Comparative results between the kernels described in this chapter are also considered. 

That is comparison of precision in individual kernels based on distances and the ACK 

kernel. The retrieved set of images always equals size of a certain class (category). This 

results were presented on different databases see Figure 4.1-Figure 4.5 (the image on 

the left). In the same set of figures (the image on the right) comparative results for the 

two best performing kernels for kernels based on individual distances and ACK are 

given  together with the best performing combinations kernel-descriptor for RBFK, LK 

 

 

Figure 4.1: Average precision over iterations for the individual distance kernels and 
ACK (on the left). Comparison of two best performing cases for each type of kernel (on 

the right). DColour database. 

 



User Relevance Feedback, Search and Retrieval of Visual Content  
 

 99

For the DColour database with classes based on low-level visual features, in Figure 4.1 

it can be seen that the ACK manages to outperform most of the kernels based on 

individual distances, even kernels based on colour. This is due to the adaptive nature of 

the kernel and the ability to select relevant features on-line. A similar high performance 

is also obtained when comparing with best results for RBFK and LK (image on the 

right). 

. 

  

Figure 4.2: Average precision over iterations for the individual distance kernels and 
ACK (on the left). Comparison of two best performing cases for each type of kernel (on 

the right).D8 image database. 

 
 

Figure 4.3: Average precision over iterations for the individual distance kernels and 
ACK (on the left). Comparison of two best performing cases for each type of kernels (on 

the right). D25-1800 image database. 
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For the two object based databases with homogeneous background Figure 4.2-Figure 

4.3. The ACK kernel gives high performances when comparing to individual distance 

kernels ( images on the left). However when comparing to other classical kernels it is 

performing averagely. This led to a conclusion that the weighting scheme in ACK 

kernels actually gives more weights to the background colour and hence the results are 

worse. 

So even though the ACK adapts to the data it is modelled for natural images not object 

based categories with artificial uniform background. 

 

 

Figure 4.4: Average precision over iterations for the individual distance kernels and 
ACK (on the left). Comparison of two best performing cases for each type of kernel (on 

the right). D7-700 image database. 

  

Figure 4.5: Average precision over iterations for the individual distance kernels and 
ACK (on the left). Comparison of two best performing cases for each type of kernel (on 

the right). Caltech 101 image database. 

 

In natural images with diverse background as in D7-700 and Caltech 101 image 

database, the ACK kernel performs better than individual distance kernels as expected 
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(image on the left) Figure 4.4- Figure 4.5. And at the same time gives highest precision 

comparing to other kernels (image on the right) adapting itself as more training data 

becomes available. 

In the next paragraph, as in the previous chapter precision-recall curves are presented 

for the D7-700 image database. The precision values are again averaged over same 

relative scopes. The aim is to show how more training information influences the results 

of SVMs through iterations. 

 Average precision-recall curves between the kernels described in this chapter are 

considered. That is comparison of precision-recall values is given, between individual 

kernels based on distances and the ACK kernel. In Figure 4.6, in all of the curves there 

is a very clear and distinctive improvement when using the ACK kernel The precision-

recall curves at bottom right in Figure 4.6  present precision-recall over  different 

iterations for the best performing ACK kernel. This curves show a conclusive 

improvement, that is more training samples lead to improved quality of results, since the 

precision-recall values for the fifth iteration with the higher number of training samples 

show best performances. This is a direct consequence of adaptive nature of the ACK 

with adjusts the kernel , and weights differently each feature based on intra class 

variance for relevant and irrelevant samples. 

Adaptive convolution kernel that deals with multi-feature spaces and guarantees 

convergence of the SVM optimisation problem has been introduced. A feature space as 

a structure of individual visual feature spaces with different distances was considered. 

The ACK kernel follows the nature of the patterns used and learns over time a better 

representation of similarity for the structured data feature space. For a particular 

combination of distances it has been proved that the ACK kernel is positive definite 

with high performance values. Furthermore this approach gives possibility of defining 

new convolution kernels and combining features very different in nature as visual, audio 

and motion descriptors and therefore effective classification of multimedia content. 
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Figure 4.6: Average precision-recall curves for kernels based on individual distances 
and for the proposed kernel ACK in the given structured multi-feature spaces. (top to 
bottom, left to right). Comparative results through iterations for the best performing  

ACK kernel are given in bottom right corner. 
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CHAPTER 5 :  An Object- Driven System 

with Relevance Feedback and Kernels on 

Sets 

5.1. Introduction 

In this chapter user’s interest in single semantic objects is considered. Bearing in mind 

that object segmentation is arguably as hard as the semantic gap problem, a block-based 

structure is introduced to label single objects in images. The reason for using this 

strategy came out of conclusions of our previous thorough empirical analysis of 

retrieval systems in a relevance feedback scenario (Dorado et al. 2006). It was noticed 

that labelling complete images as relevant to a given key-word introduces a lot of noise 

due to the variety of non relevant objects in complex scenes. The same aspect is studied 

in few other approaches from the literature. Mostly interest points and models 

composed of local characteristics of image parts and spatial relations among them are 

exploited. For instance, in Fergus et al. (2003) global object models are learned based 

on scale-invariant image regions. In Agarwal and Roth (2002) a vocabulary of image 

parts is used together with spatial relation among the parts. Another interesting 

approach, proposed by Csurka et al. (2004), detects interest points and patches around 

them, then these points are clustered to create a fixed length histogram feature vector. 

However most of these methods are parametric and assume the input data can be 

faithfully modelled by some probability distribution.  
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Though the advantage of using interest points in an object recognition scenario is 

apparent, there is no guarantee that in a retrieval scenario for natural images the points 

and features describing the local regions around the points will be representative 

enough. Natural image databases usually do not contain different views of the same 

object but a variety of pictures of the same conceptual object, e.g. tigers; with high 

variance in visual appearance, size, occlusion and posture. Conventional computer 

vision approaches for object recognition are likely to fail in such scenarios. 

 Contrasting this, the structured feature space proposed in this chapter consists of 

several low-level feature representations of texture, colour and edges for small image 

blocks. This space incorporates both the low-level similarity in the multi-feature space 

described before and spatial correlation among neighbouring blocks. The idea is to 

combine the low-level similarity of features and spatial relations of image parts into a 

semi-local, semi-global feature representation level and to devise a kernel that could 

handle this data (Djordjevic and Izquierdo, 2006d). 

5.2. Overview of Kernels on Sets 

In this section an overview of approaches for kernels with vector sets is given. The use 

of localized features and discriminative learning approached has recently given rise to a 

new class of methods that model the kernel to deal with not only input vectors of equal 

dimension, with each vector corresponding to a particular global feature, but also sets of 

interest points descriptors of different cardinality. Furthermore since several types of 

features are collected together they all need to be fused in a kernel. Several approaches 

have been recently proposed when dealing with kernels on sets. Observe that using 

kernels on sets enables the handling of sets of descriptors with different dimensions.  

Most relevant approaches form the literature use kernels on sets over local low-level 

features. A kernel that derives an average similarity of the best matching local 

primitives in two features sets was introduced by Wallraven et al. (2003). However, the 

underlying maximum operator proposed in leads to a non-Mercer kernel. Thus, 

convergence and uniqueness of the solution of the optimization problem underpinning 

the used SVM classifier is not guaranteed.  

Similarly a kernel in Lyu (2005) uses a power of all possible local feature matches in 

sets; Though with good performances this kernel is computationally very expensive.   
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The authors in Boughhorbel et al. (2004) proved that statistical positives of a non-

Mercer kernel can be guaranteed with high probability by controlling the 

hyperparameters in SVMs, however this does not stand for the general case. 

Another interesting approach for kernels on sets deals with principal angle based 

similarity kernel between two linear subspaces spanned by mapping from real to Hilbert 

space (Wolf and Shashua, 2003). However in this case the kernel is only positive-

definite for sets of equal cardinality.  

In Shashua and Hazan (2005) a family of algebraic kernels was used to combine 

similarities given by vector-based kernels. In this case various weighs indicate the level 

of alignment between feature parts. 

 Several methods design kernels based on probabilistic models of inputs. Instead of 

defining a kernel directly between input sets of different cardinality, the inputs are 

regarded as independent and identically distributed samples from unknown distributions 

from a same parametric family. The vector set kernel is defined as a kernel between 

these distributions. For instance, the Bhattacharyya kernel uses multivariate Gaussian 

distributions (Kondor and Jebara, 2003), while KL-divergence is used in Moreno et al. 

(2003). In Grauman and Darrell (2005) an explicit histogram pyramid was formed on 

sets, and used for partial matching with hierarchical weighted histogram intersection as 

similarity measure.  

However all of these approaches have limitations in complexity, parametric 

representation, positive definiteness and they are mainly defined for interest points like 

SIFT or jets ( Lowe, 1999; Schmid and Mohr, 1997; Mikolajczyk and Schmid, 2005) or 

specific histogram representations (Grauman and Darrell, 2005). 

Hence in this chapter low-level similarity of features and spatial relations of image parts 

are combined into a structure and localized feature space and then a kernel on sets that 

could  accommodate this data is considered. 

5.3. System Overview and Feature Spaces 

To simulate human visual perception several primitives or low-level features extracted 

from image content need to be considered. The aim is to obtain information from 

different low-level visual cues at various levels of complexity and to jointly exploit that 
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information to infer higher levels of conceptual abstraction. Low-level descriptors are 

very useful to search for patterns of interest and similarities in image database. 

However, if the aim is to retrieve audiovisual content using semantic structures, e.g., 

key-words, which are natural to humans, three profound challenges become evident: 

how to merge different low-level content features into meaningful descriptors with high 

semantic discrimination power (as discussed in Chapter 4); how to deal with the 

subjective interpretation of images by different users under different conditions (the 

relevance feedback); and how to recognize single semantic objects in complex images.  
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Figure 5.1: Framework architecture. 

The proposed system, as outlined in Figure 5.1, consists of three main sub-systems. 

Each one of these sub-systems relates to one of the three challenges described 

previously: merging different low-level content descriptions; object based model; and 

user relevance feedback. The first sub-system runs offline and embraces three 

processing steps. Initially all images in the database are split into blocks of small size. 

The aim of this processing step is to handle single semantic objects as mosaics of 

elementary blocks. In the second step several low-level features are extracted 

automatically for all image blocks. Now the problem is how to merge these features into 

a single multi-feature descriptor and this has been addressed in Chapter 4. This step 

leads to the "multi-feature space" highlighted in Figure 5.1. 
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The second sub-system initially runs on-offline and addresses the challenge of 

effectively capturing single objects in natural scenes. This challenge is tackled by 

generating a structured block-based representation of each image. Image blocks are 

clustered together based on their joint low-level similarity and spatial proximity to each 

other. This step generates a number of representative structures per image as illustrated 

in Figure 5.1. However it is also used online, together with the third sub-system, in 

order to capture common structures in user selected relevant images and to exclude any 

structures that are common to the irrelevant images. 

The third sub-system involves online interaction with the user and comprises a number 

of processing steps. The interaction is initialized by retrieving few previously annotated 

pictures related to a given semantic concept. The user marks the retrieved pictures as 

relevant or irrelevant. This information is used as the supervised input to the SVM 

based learning approach. The method uses the structured descriptor space generated in 

the offline stage of the second sub-system. It classifies images by matching structures 

using the proposed nonlinear multi-feature kernel. This kernel exploits the user input to 

weight dynamically each feature space accordingly. In each iteration the structuring 

sub-system is used to capture relevant structures across images labelled as relevant by 

the user, and to exclude those clustered among irrelevant images (e.g. homogeneous 

background). The weights assigned to the different feature-spaces are denoted by lω  in 

Figure 5.1. Finally, the system outputs relevant images to a given semantic concept or 

keyword. This information can be used in a second iteration of user relevance feedback 

to improve the retrieval performance with respect to the semantic concept of concern. 

 After several online iterations with the user in the loop, the system outputs all relevant 

images and the learned weights defining the underlying multi-feature space for a 

specific semantic concept. At the same time, the semantic concept or key-word of 

concern is propagated through all retrieved relevant images in the database. 

5.3.1 Low-level Feature Selection 

The multi-feature space for images is defined as a structured data space as mentioned in 

Chapter 4 out of the following low-level descriptors: CLD, CSD, DCD, EHD, HSV 

histogram , Gabor Filters Feature (GFF) and GLCM. Note that instated of HTD from 

Chapter 4 a new descriptor is used, this is Gabor feature filter (GFF) . Both HTD and 

GFF are based on Gabor filters while HTD is standardized in number of scales and 
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direction, these parameters can be freely adapted in GFF. A disadvantage of HTD is that 

it deals with images of size equal or larger to 128x128 pixels. And since the idea of this 

chapter is to incorporate smaller blocks of images into a mosaic structure, the GFF 

descriptor is more suitable. The GFF is used to extract localized texture information on 

a number of directions and scales. The mean value and standard variation of Gabor 

filtered image coefficients are used to construct the feature vector (2.1).The distance 

values between two feature is 1L  distance of normalized first and second moments of 

Gabor coefficients (2.5). Hence the positive definiteness discussed for HTD (Chapter 4) 

also stands for the appropriate exponential distance kernel built for GFF. 

5.4.  Object-based Structured Descriptor Space 

Most annotation and retrieval approaches from the literature have dealt with either 

whole images or (not semantically meaningful) regions segmented according to colour 

or texture similarity. If segmentation is used the presence of noisy regions and 

oversegmentations is unavoidable. This leads to confusing and inadequate retrieval 

results. Consequently, on the one hand we need to consider the fact that even the best 

image segmentation techniques cannot extract meaningful semantic objects, hence it is 

not reasonable to assume object segmentation in a retrieval system. On the other hand, 

without segmentation learning techniques may fail to capture a specific object the user 

is interested in (Chapter 4, Figure 4.2 and Figure 4.3). However, semantic objects can 

be regarded as mosaics of small building blocks. In most cases these building blocks do 

not encapsulate the whole semantic concept and they can be regarded as being closer to 

low-level than to high level descriptions (Izquierdo and Djordjevic, 2006).  

In this section a method to organize individual image blocks into meaningful structured 

data conveying spatial information is presented. The aim is to keep the descriptor 

resolution at block level, local to objects rather than whole images, while at the same 

time capturing higher-level semantic information. To do so, first elementary non-

overlapping structures covering the whole picture are generated. Once this has been 

achieved key-representative blocks within each image are extracted using  k-medoids 

clustering method (Kaufman and Rousseeuw, 1987). Meaningful clustering is achieved 

using the distance (4.8) as well as the spatial proximity of the generated structures.  
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Let  1 2{ , ,..., }nI I I  be the images in the database of concern. Each image is partitioned 

into a grid of r s×  blocks. Let , 1,..., , 1,..,ijB i r j s= =  be the set of image blocks for a 

given image. Here ijB  stands for the block at position ),( ji . The similarity between two 

blocks is estimated according to (4.8). Next, each block in an image is assigned to a 

group made up of 3x3 neighbourhoods. These 3x3 blocks neighbourhoods are called 

(regular) structures. For border areas the structures are adapted not to cross over the 

bounds and hence can be smaller then 3x3. These mosaics are the initial structures 

denoted as S  in Figure 5.2 a).  
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Figure 5.2: a) The 3x3 neighbour used to build initial regular structures and its 
breakdown into non-regular, non-overlapping structures b) A single block (blue colour) 
as a member of several neighbouring overlapping structures. White arrows correspond 
to low-level similarity between central blocks of each structure (in red). The blue block 

remains a member of a structure to which it is most similar. 

The distance between block ijB  at the centre of each structure ijS  and any other blocks 

B is defined as “the distance between ijS  and  B”. The distance between ijS  and B is 
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also estimated according to (4.8). The distance between two structures is defined as the 

distance between their central blocks. Observe, that the initial regular structures overlap 

each other. In the subsequent processing step non-overlapping structures are built 

according to the following condition, (see Figure 5.2 b):  

 If a block B is a member of two or more neighbouring structures then it is removed 

from all structures but the one closest to itself. 

Using this condition the number of member blocks of each structure is reduced. And 

refined subset of structures  ijS�  is formed. Observe that  ij ijS S⊆�  for some but not all 

,i j . The resulting refined set of structures is non-overlapping and of irregular shape as 

shown in Figure 5.3 (left).  

In order to generate a set of key representative descriptors, k-medoid clustering is 

performed on the obtained structures by incorporating spatial information. Though k-

means is computationally more efficient than the k-medoid, it requires a well-defined 

vector space. Unfortunately, the multi-feature space considered in this work is not even 

a metric space (as discussed Chapter 4), hence the k-means clustering technique cannot 

be applied. Observe, that k-medoid clustering can be used over any feature space 

endowed with a similarity function. The aim is to cluster together structures ijS�  using 

the similarity function (4.8) and spatial information about ijS� . The similarity function 

for the clustering algorithm is defined as:  

( , ) ( , ) ( , )pq ij pq ij pq ijD S S D S S S S= ⋅Γ� � � � � �� ,                              (5.1)                   

for 
,

( , ) min ( , ) 1
vx pq yz ij

pq ij vx yz
B S B S

S S B Bγ
∈ ∈

Γ = +
� �

� � , where γ  is the Chebyshev distance over 

the positions of the block contained in the two structures. That is,  

( )( , ) max ,vx yzB B v y x zγ = − − . Observe that the similarity measure ( , )pq ijS SΓ � �  

weights (4.8) using the actual spatial distance between the two structures Figure 5.4. 

Armed with (5.1), and for the sake of completeness, the k-medoid clustering algorithm 

is explained in the following paragraph and depicted in Figure 5.3 (right). 
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Figure 5.3:  Mosaics of structured elements before and after clustering using low-level 
similarity and spatial proximity of structured elements. The elements with blue dots 

represent structure centres and the four elements with black dots representative centres 
of the four representative clusters. 

Initially  cluster medoids (prototypes) 0
kC , 1,...,k K= are randomly selected among all 

structures ijS� . Using these K  medoids an iterative process is started. At a given 

iteration t  the set of  medoids is defined as { }, {1,..., }, {1,..., }t
k pqC S p r q s= ∈ ∈� . The 

membership of each element to a cluster is obtained by finding the minimum distance 

(5.1) from an element to cluster medoid. The new updated set of medoids is generated 

so that the sum of the distances between a new medoid and member elements of  that  

cluster is minimal: 

,
min  ( , ).pq ijp q i j

D S S∑∑ � ��                                              (5.2) 

Then membership of each cluster element is updated and if any of the memberships 

changed a re-allocation of cluster medoids is performed and the iterations continue. 

The previously described clustering process leads to a new descriptor with predefined 

number of representative elements. These descriptors have local block level 

discrimination power and convey spatial contextual information, Figure 5.3. 
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Figure 5.4: Spatial proximity between non-overlapping structures. 

5.5. Kernel on Sets for Structured Feature Space 

Following the previous process to generate arbitrarily shaped structures (potentially 

representing objects in the image), the similarity between such structures can be 

measured using the low-level descriptors and ACK (Chapter 4). However, the results 

obtained when individual structures were used with ACK kernel, were not as expected. 

The main reason for the observed moderate performance is that fact that the estimated 

structures are not always good representations of semantic objects. Indeed, in most 

cases the obtained structures are parts of object and more than one structure is needed to 

roughly represent an object, Figure 5.5. Considering this fact a different approach was 

taken to retrieve images containing similar objects.  
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Figure 5.5: Example of clustered structures where the obtained structures are parts of 
object and more than one structure is needed to roughly represent an object. 

 

In each iteration the obtained structures from the previous step of forming a structured 

space are further used to capture relevant structures across images labelled as relevant 

by the user, and to exclude those clustered among irrelevant images Figure 5.6.  

In an iteration two sets are obtained, a set of relevant and irrelevant user labelled 

images. Since we have representative structures for each image, the process of obtaining 

even better key representations can be further refined by obtaining only structures that 

are common to all relevant images. The most similar structure across images can be 

obtained and further on ordered by decreasing levels of coherency. 

In Figure 5.6 it is depicted how a structure is chosen to be a part or not of that particular 

“across image cluster”. For each cluster in a set of relevant images we find the most 

similar structure from a new image, where the similarity is obtained as similarity to all 

elements that are already members of that function, and based on similarity measure 

(4.8). In Figure 5.6 a) the cluster is formed across images labelled as 1, 2 and 3. Now 

the choice of a structure from image 4 needs to be made. The structure from image 4 

that has the smallest distance from all members of that cluster will be chosen as the new 

member. This allows for most similar structures to be clustered together. Hence in this 
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way a set of  most coherent clusters is obtained for each relevant  and irrelevant set, and 

this clusters can now be ordered in decreasing levels of similarity Figure 5.6 b) and 

Figure 5.6 c).  
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Figure 5.6:a) Clustering image structures across images b) clusters of representative 
structures across images labelled as relevant, ordered by decreasing cluster coherency, 

c) clusters among images labelled as irrelevant, ordered by decreasing cluster 
coherency. 

The reasoning being, that if irrelevant images have very coherent clusters which are 

similar to clusters across relevant images, then all the structures that are members of this 

cluster need to be removed from the set of representative structures for each relevant 

image (e.g. coherent background across the database). As well as from the set of 

representative structures for negative images since they have low-level commonality not 

connected to the concept in question. When considering similarity between two “across 

mage clusters”  the similarity is obtained between their medoids by using  low-level 

similarity (4.8).  The medoids  are closest elements to all the other elements in that 
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particular cluster. Hence, the obtained set of representative structures per  relevant and 

irrelevant images is further refined, removing background noise and capturing similarity 

across images. Therefore this sets have variable cardinality of individual descriptors for 

each key representative. 

Given two images and their decomposition into structures, the kernel to measure 

dissimilarity is defined as the sum of dissimilarities estimated using all possible 

combinations of structure pairs between the two images, “summation” kernel. The 

reason is that now the contributions of structures building a single object are added 

together and the actual object representation is better considered in the underlying 

measure. This kernel need: to satisfy the Mercer condition; to be computationally 

effective; and  to be able to handle inputs of variable length.  

 Let a set of local features for the i -th image be ( ) ( ) ( )
1 2 ( ){ , ,..., }i i i

i N= x x x XX , 1,...,i m= , 

where ( )iN X  is the cardinality of the i -th image set and ( )i
kx , 1,..., ( )ik N= X  is a 

multi-feature vector for key-representatives in an image. The dissimilarity of a pair of 

local vectors can be represented with a local Mercer’s kernel ( ) ( )( , )i j
L k hK x x , in this case 

the ACK kernel from (4.14). Hence the summation kernel is PD kernel as a sum of PD 

kernels: 

( )( )
( ) ( )

1 1
( , ) ( , )

ji NN
i j

i j L k h
k h

K K
= =

= ∑ ∑ x x
XX

X X .                               (5.3) 

 

This kernels leads to much better results than in the case whole images (Chapter 4), 

results as reported in the next section. 

5.6. Experimental results 

For most categories there is a huge variance in low-level features over different images 

as presented in Chapter 4. Even though the results were averaged over a number of 

independent runs, the mentioned variance leads to inconstancy that inspired 

development of set kernels on structured feature spaces (5.3). According to the 

framework presented in Figure 5.1 the set kernels in a structured descriptor space, are 

experimentally evaluated.  Performances for the ACK kernel from (4.14). with complete 

images and for set kernels with local ACK kernels (denoted as SET (ACK)) from (5.3). 



User Relevance Feedback, Search and Retrieval of Visual Content  
 

 116

were evaluated on all four databases with clear semantic concepts : D8 image database, 

D25-1800 image database, D7-700 image database and Caltech 101 image database. 

The same experimental setup as given in Chapter 4, was used for these experiments. 

In Figure 5.7, Figure 5.8 precision for the ACK kernel is presented, and since it was not 

the best performing kernel for databases with homogeneous background (see Figure 4.2 

and Figure 4.3), the best performing kernel from the mentioned figures is also shown.  

The results from the SET(ACK) kernel described in this chapter outperform the ACK 

kernel on whole images as well as the best performing combination of kernels and 

descriptors LK(CONC) in Figure 5.7or individual kernel KCSD in Figure 5.8. 

 

Figure 5.7: Average precision depending on the iteration, over all concepts for the D8 
image database. 

 

Figure 5.8: Average precision depending on the iteration, over all concepts for the 
D25-1800 image database. 
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Similar results can be seen from Figure 5.9 and Figure 5.10 with precision curves over 

different categories for the D7-700 image database and Caltech 101 database. In both 

cases the newly designed kernel incorporating spatial information outperforms the ACK 

kernel on whole images, which on its own had the highest precision when compared to 

other kernels on whole images (Figure 4.4 and Figure 4.5), in both databases.  

 

Figure 5.9. Average precision depending on the iteration, over all concepts for the D7-
700 image database. 

 

Figure 5.10: Average precision depending on the iteration, over all concepts for the 
Caltech 101 image database. 

 

These results justify the idea for using structured descriptors with low-level similarity 

and also incorporating spatial information about building block s. The feature space was 

generated in a structured way exploiting both low-level content of object-based image 
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blocks and their spatial location within an image. A set kernel with individual 

convolution kernels performing over multi-feature space was designed, to work with 

SVMs in a RF scenario. This leads to improved performance and reduction of 

background noise. 
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CHAPTER 6 : Application  

6.1. Introduction 

Two main applications of developed improvements for relevance feedback module have 

been presented in this chapter. The first one is focused on the task of adding knowledge 

to the image content in order to enable more “intelligent” classification. The second 

application describes the aceMedia system integrating a number of functionalities 

including the relevance feedback module described in this thesis. 

6.2.  A Framework for Image Selection in Concept Learning 

Traditionally, proposed methods in machine learning and pattern recognition are used to 

select a path from visual features to semantic meaning. In this type of approaches the 

learning process is based on basic visual interpretation of the image content indicating 

observed elements in the scene, e.g. landscape, cityscape (Vailaya et al. 1998, 2001).  

It is well known that two objects can be similar in their visual primitives but 

semantically different to a human observer. Therefore substantial noise could be 

introduced in propagating interpretations using only low-level similarity. On the other 

hand propagation based only on high-level similarity puts a heavy burden on the 

designer. Combined approaches that go both ways underpin the paradigm of “bridging 

the semantic gap.”  

In this section a framework to assist concept learning from examples, in semantic-based 

image classification is presented (Dorado et al., 2006). The framework exploits the 
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capability of support vector classifiers to learn from a relatively small number of 

samples (Jain et al. 2000). A straightforward way to choosing training samples is by 

random selection of images, however this does not guarantee quality or good 

representation of the concept. On the other hand, manual searching for good training 

samples has also drawbacks. One of them is how to define “a good” sample, this 

involves subjectivity and varies from one designer to another. Manual search could also 

imply the need to traverse the entire database in an effort to obtain higher efficiency. 

Consequently, selection of suitable examples becomes a critical design step. This 

framework uses unsupervised learning as the first step in designing the classifier. By 

applying clustering it organizes images based on low-level similarity in order to assist a 

designer in selection of positive and negative samples for a given concept. Basically, 

clustering outcomes are used to identify sensitive points that can define the hyperplane 

between groups of images associated with certain concepts. 

Low-level feature similarity, relies only on machine’s interpretation of the content, and 

hence has a shortcoming in terms of efficiency due to introduction of misleading 

information. Here is where relevance feedback plays an important role through active 

learning by allowing additional training and system adaptation.  

Therefore in order to refine the classifier model the initial design step is followed by an 

active learning step. After clustering the space of image descriptors, positive samples 

are selected from feature vectors situated in the well-populated regions in the 

neighbourhood of cluster prototypes relevant to the chosen concept. Negative samples 

are selected from feature vectors placed in regions with clashing cluster prototypes or in 

regions where two or more clusters overlap. The framework is designed to captures 

hints from the professional annotator observed from the clustering result. 

6.2.1 The Problem of Learning Concepts 

Semantic-based classifiers perform the task of using content-based descriptions to 

assign certain objects to a given semantic concepts. The training process in learning-

from-examples is carried out by presenting declarative knowledge through a number of 

labelled objects. In this way human subjectivity is introduced to image classification. In 

order to refine the classifier model the initial design step is followed by active learning. 

Bhanu and Dong (2002) proposed a framework for learning concepts based on retrieval 

experience, which combines partially supervised clustering and probabilistic relevance 
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feedback. The challenge of finding suitable samples is also observed in training 

strategies as the one presented in Boutell et al. (2004). Several interactive approaches 

have been proposed to enable system adaptation based on long-term learning (Bhanu 

and Dong 2002; Yoshizawa and Schweitzer 2004). Tong and Chang (2001) proposed 

the use of support vector machine active learning algorithm for conducting effective 

relevance feedback for image retrieval. In a similar manner Zhang and Chen (2002) 

propagated annotations using training samples that enable maximum knowledge gain 

(reduction of uncertainty). Nguyen and Smeulders (2004) proposed a similar strategy, 

for active learning in classification by taking into account prior data distribution and 

cluster medoids. An image is considered to be either a positive or negative sample of a 

given concept, if it satisfies a criteria defined by a professional annotator. However, 

subjectivity of the selection criteria, amount of available examples, image occlusion, 

shadows, rotation etc., are just some of the identified drawbacks in collecting training 

patterns. Choosing samples based just on human perception misses out on the fact that 

in the end the classifier will be using descriptions with limited domain knowledge, and 

not the overall cognitive human perception. Then, the problem is how to assist designers 

in selecting samples to train semantic-based image classifiers.  

6.2.2  A Framework for Concept Learning  

Low-level features are organized by combining unsupervised and partially supervised 

training modes. The objective is to find a classifier model that roughly resembles the 

semantic categorization of images. 

P ro fe ss io n a l A n n o ta to r  

F ea tu re  
E x tra c tio n  

C lu ster in g  

S a m p les  
S e lec tio n  B in a ry  

C la ss if ie r  

R elev a n ce  F eed b a ck
H in ts  (+  / - )  

T ra in in g  P ro cess  
S tep  1  
S tep  2   

Figure 6.1: Framework for training a SVM classifier. The first step uses clustering to 
assist the professional annotator in selecting image samples. The latter step applies 

active learning through relevance feedback to refine the classifier model 
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An initial data set is built with the best-ranked images in the clusters, Figure 6.1. These 

images are associated with sensitive points of two types: positive samples with high 

membership to a relevant cluster; and negative samples with high membership to a non-

relevant cluster, associated with a different concept than the relevant one  

These positive and negative samples constitute the candidates of training patterns. Then 

in an active leaning procedure the annotator follows a sample selection procedure to 

decide if the candidates are suitable samples to obtain a classifier model (see Figure 6.2) 

The second step in the training process uses relevance feedback to refine the classifier 

model. The classifier predicts positive examples for the category from the unlabelled 

images. 

  

   

  

Semantic 
Categories 

Indoor

Outdoor

Images positively 
exemplifying a concept 

 Low level involvement from a 
professional annotator

 Low-level Similarity Measure 
            Semantic Similarity 

“natural” 
clusters 

Semantic 
Relevance 

Cluster j

Cluster i 

Prototype j 

Prototype i 

 

Figure 6.2: Finding design samples for a first training round. Low-level similarity is 
captured by the clustering algorithm. Professional annotator indicates relevant images 

to the concept. 

The professional annotator provides hints indicating positive and negative images found 

among the classification results. These annotator’s hints are collected to update the 

training data set. Furthermore, both positive and negative images are used to refine the 

classifier. The introduced knowledge accumulated during the training interactions is 

used to increase the problem domain knowledge and enable long-term learning. The 

framework’s components are detailed below. 
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Unsupervised Clustering 

 

The goal of the clustering task is to help organize low-level features into groups with 

interpretations that may relate to relevant concepts of the image content.  Thus, features 

are clustered according to similarities among them (Jain et al. 1999). The cluster 

assignment is essentially unsupervised and no prior knowledge of the underlying 

content is used in the algorithm. Although any clustering mechanism helps in revealing 

the structure of the data set, the nature of the problem requires an extension to deal with 

the subjectivity and fuzziness of the human interpretation. In the proposed framework, 

the clustering task is carried out using Fuzzy C-Means (FCM) (Pedrycz 1990). 

FCM is an optimisation technique based on minimization of objective function that 

measures the level of data space partitioning. The objective function indicates the 

quality of the partition and has the following form: 

2

1 1
( , , ) ( , )

m c
p

i jij
i j

J X u d
= =

=∑∑V U x v  

where X  is a data space, with m elements, feature vectors ix  of dimension N . V  is a 

set of (2 )c c m≤ ≤  cluster prototypes with N -dimension elements jv . (1 )p p< < ∞  is 

a fuzzy exponent determining a degree of overlap of fuzzy clusters and U  is a matrix 

defining fuzzy partitions: 

1 1
[ ], [0,1], 1 ,  0

c m

ij ij ij ij
j i

u u u u m
= =

= ∈ = < <∑ ∑U                         (6.1) 

Where iju  is the degree of membership of vector ix  in the cluster j . 2 ( )d ⋅  is any 

distance norm expressing the similarity between any feature vector and the prototype.  

 A drawback of the approach is that after a number of iterations the solution can 

converges to local minima, which is not necessarily the optimal one. The convergence is 

independent of the change in the distance function if the distances are all positive and 

the prototypes are calculated accordingly to the minimization of the objective function.  

An illustrative example of using clustering as pre-processing mechanism to find suitable 

samples is presented in Figure 6.3.  FCM provides the cluster prototypes as well as the 
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feature space partition. Membership degrees of patterns to each cluster are used to 

collect candidate images of design samples. 

Professional Annotator 

Nearest feature vectors 

Cluster Prototypes 

Source Images 

Indoor Outdoor 

 

Figure 6.3: Selection of sample images. Training examples are chosen from nearest 
feature vectors to cluster prototypes. In this case, feature vectors correspond toCLD. 

 

The best-ranked images, nearest patterns to the prototypes, are organized into sets, 

which are presented to the annotator who selects images that positively or negatively 

represent the concept. These are training samples used to train the classifier in a first 

round. A basic classifier model is obtained using these samples.  

Relevance Feedback 

SVMs show good performance for the generalization task over various pattern 

recognition problems and with small training data sets (Duin 2000), which makes them 

appealing for this framework. The adaptive convolution kernel analysed in Chapter 4 

with appropriate number of feature spaces, was also used here for relevance feedback 

and within the binary classifier.The proposed modification uses SVM and employs 

kernel-learning approaches to optimise the non-linear mapping introduced with kernels 

for a better correspondence to chosen features. As depicted in Figure 6.1, the system 

captures hints of domain knowledge related to the classification problem. During the 

second step of the training process, a professional annotator provides hints indicating to 

the classifier whether or not its decisions were correct (positive or negative hints). The 

classifier uses those hints to adjust the boundaries between patterns containing (or not) 



User Relevance Feedback, Search and Retrieval of Visual Content  
 

 125

the concept. These boundaries are defined by the hyperplane based on support vectors. 

The idea of this supervised learning step is not to estimate distributions of the 

known/unknown patterns but to learn the optimal non-linear decision hyperplane.  

6.2.3  Experimental studies 

Experiments were performed on images selected from the Corel stock gallery. Two 

groups consisting of 1035 and 1200 photographs were organized into a number of high-

level semantic categories.  

The first group was used to classify indoor (kitchens, bathrooms, office interiors, 

museums, etc.) and outdoor (contemporary buildings, city architecture: Rome, Chicago, 

etc.) images. The second group was used to classify animals (dogs, tropical sea life, 

etc), city views (New York city, Ottawa, etc), landscapes (autumn, Yosemite, etc), and 

vegetation (perennials, plants, American gardens, etc) images. The indoor/outdoor 

feature space was built with vectors containing CLD descriptions. On the other side, the 

animal-city_ view-landscape-vegetation feature space combines CSD, EHD, and HTD.  

Cluster analysis 

The similarity of best-ranked images after clustering for the indoor/outdoor 

classification problem partially resembles the expected semantic grouping. 

 

 
Figure 6.4: Top-ten ranked images according to highest membership in the clusters. 
Categories: indoor and outdoor. Each row corresponds to a representative set of a 

cluster. 
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The number of clusters was experimentally determent  to five and images ordered based 

on membership degrees. Clustering results for the indoor/outdoor classification problem 

indicate that colour is an appropriate descriptor to create a separable feature space in 

this domain. 

As depicted in Figure 6.4 the first set (row 1) contains samples of indoor images, except 

the fifth image that corresponds to a building lose-up. Most of the displayed images are 

good candidates of outdoor (rows 2 and 3) and indoor (rows 4 and 5) concepts. The 

sixth and tenth images in the fourth set (row 4) are negative examples of indoor 

category, though their colour distribution is closer to the prototype of this group. 

Following figures contain the best-ranked images in the clusters for the classification 

problem of four categories animal, city view, landscape, and vegetation. Low-level 

similarity is based on colour and texture features. The feature space was partitioned into 

ten clusters. 

 

Figure 6.5: Sets satisfying criteria for the semantic categorization: vegetation and 
animal. 

Figure 6.5 show a sample of image sets satisfying criteria for the semantic 

categorization. Images found in each cluster set can be directly attached to a category, 

row 1 (cluster 4) to vegetation and row 2 (cluster 7) to animal. 

Figure 6.6 gives a sample of image sets with overlapping criteria for the semantic 

categorization. Each row corresponds to two different clusters. The row 1 (cluster 8) can 

be qualified as landscape except for the last image (10th column), which is a sample of 

city view; the second row (cluster 9) satisfies criteria for category vegetation except the 

image in the 2nd column containing a city view scene. The third and fourth rows show 

overlapping between categories animal-vegetation and city view-landscape with strong 

commonalities in their distributions of colour and texture descriptions. 
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Figure 6.6: Overlapping categories: row 1: landscape-city view, row 2: vegetation-city 
view, row 3: animal-vegetation, and row 4: city view-landscape 

 

 

 

Figure 6.7: Sample of sets containing mixed objects from different categories. row 1, 
row 2, and row 3 are examples of how low-level similarity can lead to semantically 

meaningless grouping. 
 

As expected, some sets in the ranked images contain objects from more than two 

categories. It shows why the clusters cannot be attached to a single category. 

Consequently, relying just on low-level similarity can lead to semantically meaningless 

grouping (see Figure 6.7). 

Framework assessment 

In order to evaluate stability of the classifier model, a set of experiments were carried 

out using random selection of samples. Conversely, this approach skips the clustering 

procedure. As can be observed in Figure 6.8, the classification results lack stability. It is 

due to sample collection based on visual inspection along with subjective criteria of the 

annotator without taking into account any low-level similarity. 
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Figure 6.8: Classification results using random selection of images. X-axis indicates the 
number of iteration in which the annotator provides new samples to the classifier. Y-

axis shows the resulting accuracy 
 

The three training approaches summarized in Table 6.1 are used to assess the 

performance of the classifier within the proposed framework. 

Table 6.1: Training approaches used to assess the classifier performance 

Training 

approach 
Description 

SVM+FCM 

SVM classifier assisted with hints provided by a 

professional annotator governed by clustering (FCM) 

results during the training phase. Samples are selected 

from the nearest patterns (see Figure 6.5-Figure 6.7) to the 

cluster prototypes. 

SVM+RF 

SVM classifier using only subjective relevance feedback 

from the professional annotator, obtained by browsing 

through the database. 

SVM+FCM+RF 

SVM classifier trained by combining both clustering 

results and relevance feedback from the professional 

annotator on the pre-clustered set. 
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As a result, clustering mechanisms not only assist in the sample selection, but also 

contribute to the system’s stability (see Figure 6.9).  
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Figure 6.9: Mean accuracies achieved in classification problem using the training 
approaches detailed in Table 6.1 

 

Mean accuracies obtained in the experimental studies are presented in Figure 6.9. The 

lowest accuracy is obtained when the support vector classifier learns only from 

clustering outcomes; the classifier behaves better when using relevance feedback from 

the professional annotator; the accuracy is further improved when relevance feedback is 

based on cluster prototypes. 

Accuracy in the first approach (SVM+FCM) is lowest though it is expected due to the 

sensible reduction on the required supervision. The professional annotator needs only to 

indicate the class label of each cluster. This lightens the burden of annotation while 

introducing noise at the same time. 

The second approach (SVM+RF) depends entirely on the images shown to the user. An 

inconvenience here is the overall subjectivity due to the fact that selection of sample 

relies completely on subjective interpretation of images ignoring any low-level 

similarity between image descriptors. 

The third approach (SVM+FCM+RF), corresponding to the proposed method, shows 

highest performance. It has the advantage of taking into account the underlying low-

level structures (revealed by the clusters) while minimizing the required supervision.  
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The probability of membership for each image to a class is represented through training 

SVMs and fitting parameters of additional sigmoid function to posterior probability for 

that class (Platt 1999b). SVMs produce an uncelebrated decision value f , which 

represents the distance from the separating hyperplane, hence this is not a probability. 

Based on empirical data, Platt suggest exponential forms for class-conditional densities 

( 1)P f y =  and , ( 1)P f y = −  between margins of -1 and 1. Where y is the predicted 

label A parametric form of a sigmoid is used to fit posterior probability ( 1 )P y f= : 

( )( 1 ) 1 1 exp( )P y f af b= = + +  

This approach has two parameters ,a b which are trained discriminatively. Figure 6.10 

depicts probabilities larger than 0.5 that samples belong to the relevant class. In Table 6. 

2 values for accuracies achieved by the two-class classifiers for both datasets, are 

presented. 

 

 

Figure 6.10: Two-class classification outcomes. Input patterns are organized along the 
X-axis. Y-axis indicates the probability of membership to the corresponding category. 
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Table 6. 2: Accuracy of two-class classifiers (%) 

Animal City view Landscape Vegetation Indoor Outdoor 

74.38 87.29 74.18 87.29 82.76 79.3 

 

Some samples of correctly classified and misclassified images are given in Figure 6.11 

and Figure 6.12. 

 

Figure 6.11: Samples of images correctly classified. Probability is indicated below each 
image. 

 

 
Figure 6.12: Samples of misclassified images. The assigned categories s given on the 
far left. Misclassification probability and true class are indicated below each image 
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A framework to assist a professional annotator in choosing image samples to train a 

semantic classifier was presented. The approach uses clustering mechanisms to reveal 

the underlying structure in training data in order to shift low-level features towards 

high-level information. This learning mode reduces the burden of collecting samples by 

browsing as well as it improves the quality of the chosen samples by taking into account 

low-level similarity. The applied keyword-oriented classification is useful to describe 

images with a controlled vocabulary. High precision and accuracy levels are obtained 

by combining supervised and unsupervised modes of learning. 

6.3. The aceMedia project 

The relevance feedback module presented in this thesis is a part the European IST 

aceMedia Integrated Project. aceMedia primarily focuses on development and 

implementation of a system based on knowledge assisted, adaptive multimedia content 

management while addressing user needs (Kompatsiaris et al. 2004). The main 

technological objectives are: 

▪ to discover and exploit knowledge inherent to the content 

▪  to automate annotation at all levels 

▪ and to add functionality to ease content creation, transmission, search, access, 

consumption and re-use.  

6.3.1 aceMedia High Level Objectives 

The aceMedia project is centred around the idea of an Autonomous Content Entity 

(ACE). An ACE has three layers, content, associated metadata, and intelligence layer. 

The intelligence layer, of which the RF module is part of, consists of distributed 

functions that enable the content to instantiate itself according to its context including 

its network environment, the user terminal, and recorded user preferences. 

The aceMedia high level objectives are to build a system based on following research 

areas: 

• Knowledge and context-assisted content analysis, based on a multimedia ontology 

infrastructure to support semantic entity detection and tracking of ACE content. 
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• High-level semantic reasoning tools for automatic annotation and generation of the 

ACE metadata layer. 

• Query analysis tools and intelligent ACE search, retrieval, ranking and relevance 

feedback mechanisms. 

The project is developed into two application frameworks, enabling for both home 

network and mobile communication environments.  

6.3.2 aceMedia System Overview and Relevance Feedback Module 

The aceMedia integrated project draws together fundamental research in knowledge 

technologies and multimedia processing, within a user centred design framework. 

Figure 6.13 shows a system level representation of aceMedia, which depicts the 

contribution of various research disciplines (aceMedia, 2005). 

The content subsystem (denoted as (1) in the Figure 6.13) interacts with the aceMedia 

content (denoted as (a)) obtained from the content creator. This subsystem handles the 

essential processing tasks including pre-processing, scalable coding, cross-media 

adaptation and visualization. The user subsystem (denoted as (2) and (3)) interacts with 

the aceMedia end user (denoted as (b)) and supports the elementary operations required 

by the service provider and device manufacturer, including: content search, browsing 

and personalisation. Finally, the knowledge subsystem (denoted as (4) and (5)) interacts 

with aceMedia knowledge (denoted as (c)) to implement all intermediate steps of 

intelligent analysis and reasoning. 

In aceMedia, intelligent search and retrieval is closely related to both visual and textual 

queries. Advantage is taken of both the metadata obtained by the knowledge-based 

analysis of content and of the refined visual characterisation of this content. Intelligent 

search and retrieval modules provide a set of mechanisms for both initialising and 

refining search, by taking into account natural language queries, queries by visual 

content and relevance feedback (Heinecke et al. 2005). 

The intelligent search and retrieval mechanisms are designed to be very flexible, 

allowing the users to combine them according to their intentions, with the possibility of 

influencing the searching session based on subjective interpretations of the content 

through visual relevance feedback. The RF module in aceMedia framework is a results 

of the research on non-linear kernels from Chapter 4, specifically for a combination of 
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two descriptors CSD and EHD. This module is used to refine search queries. Using 

positive and negative user response, new information is fed into the system and a new 

iteration of the search session enabled. 
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Figure 6.13: The aceMedia system diagram. 
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Figure 6.14 shows the interface of the visual relevance feedback module within the ace 

framework. Additional search functionalities are also enabled : 

▪ Textual query: natural language user query is processed by the aceMedia 

knowledgebase and a first set of resulting images is provided to the user. The 

user can further refine his search using either a query by visual example or 

visual relevance feedback. 

▪ Query by visual example: the user can select one image from the repository 

and ask the system to return the images that are the most similar to this image. 

Again, such a visual query can be followed by a refinement using visual 

relevance feedback. 

The refinement of the search always relies on the relevance feedback provided by the 

user on the results of the previous queries 

 

Figure 6.14: The Relevance feedback module integrated within the aceMedia project. 
The interface also supports other functionalities as: generation of collections, search by 

natural language, search by visual examples etc. 
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CHAPTER 7 :  Conclusions 

7.1. Conclusions 

One of the most important aspects of today’s interactive multimedia systems is the 

ability to retrieve visual information related to a given query, preferably formulated in 

semantic terms. This important functionality can be achieved only if the content is well 

structured and annotated with key-words representing semantic concepts. Unfortunately, 

the gap between the capabilities of current image understanding algorithms and the 

richness and subjectivity of semantics in human interpretations of audiovisual media is 

a formidable obstacle. As means of achieving a step closer to bridging the gap between 

human and machine driven reasoning, iterative short term and low-effort relevance 

feedback, has been presented as an obvious step. The thesis presents a thorough study of 

visual content retrieval using relevance feedback.  

The work started with analyzes of low-level features focusing on discriminative 

properties. As a result of thorough evaluation a combination of features able to 

effectively capture low-level representations of natural images for a retrieval scenario 

was obtained (Chapter 2). Different low-level descriptors and similarity measures are 

not designed to be combined naturally and straightforwardly in a meaningfully manner. 

Thus, questions related to the definition of multiple feature spaces as well as their 

similarity functions have been addressed. 

Then, possible learners for the RF scenario were instigated. Special attention was paid 

to the backbone learning theory that might support the use of one machine learning 

method over another, for the particular RF scenario. As a result of this analyses image 
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relevance feedback framework based on support vector machines as a learning approach 

was implemented (Chapter 3).  

An adaptive convolution kernel dealing with multi-feature spaces has been proposed. 

This approach enables feature combination and not just concatenation. The kernel 

facilitates adaptive similarity matching and models the multi-feature space at the same 

time guaranteeing convergence of the convex support vector optimisation problem 

(Chapter 4). 

 It was noticed that labelling complete images as relevant to a given key-word 

introduces a lot of noise due to the variety of non relevant objects in complex scenes. 

Hence, a set kernel coupled with clustering approaches, defined in structured space has 

been proposed. The kernel encloses both multi-feature space and spatial information 

about localized image structures, enabling a higher transparency between low-level 

image features and semantic concepts. This approach gives higher performances in a 

retrieval scenario with RF than approaches dealing with whole images, since the 

background noise is avoided (Chapter 5). 

Application to classification for improved image selection in concept learning has also 

been proposed. This framework combines unsupervised learning to organize images 

based on low-level similarity, and reinforcement learning based on relevance feedback, 

to refine the classifier model. The results show improved performances for the classifier 

and higher stability, than when just browsing or unsupervised approaches are used to 

train the classifier model (Chapter 6). 

The objectives of this worked outlined in S1.2 have been fully accomplished entirely.  

7.2. Future Work 

Many issues have still not been solved.  

For instance, on-line parameter adaptation of the scale parameter leading to higher 

resilience to changes in sizes of different image classes could  further improve 

performances. 

An idea of convolution kernels can be expanded to different wrapping function (not 

necessarily exponential ones) that could more precisely define the data and enable 

combination of features very different in nature as visual, audio and motion 

information.  
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Contextual dependencies among structures can be further improved by incorporate prior 

knowledge into the process for obtaining representative structures and also integrate 

knowledge into the learning approach for relevance feedback. 

One aspect of outmost importance is how to retrieve images to the user, and how to 

allocate then different levels of relevance Employing fuzzy support vector machines 

coupled with our structure  space can not only capture relevant representatives of 

relevant and irrelevant images but also use the coherency levels in across image 

clustering to allocate levels of importance. 
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APPENDIX A : Ground Truth Image 

Databases 

A number of ground truth image databases are described and presented in section 2.5.1. 

In this appendix an overview of the visual appearance of the image  in every  databases 

is given: 

▪ DColour and VisTex  image databases have ground truths based on visual 

appearance of images belonging to the same class and sharing same color, shape 

or texture characteristics (see Figure A. 1 and Figure A. 2 ;  Table A. 1). 

▪  D25-1800 and D8 databases possess similarity in higher-semantic level, object 

level, with consistency in visual appearance achieved through uniform 

background and different views of the same object (see Figure A. 3 and Figure A. 

4 ). 

▪ D7-700 and Caltech 101 databases have a higher level ground truth, based on 

semantic meaning. Images belonging to the same class illustrate the same concept, 

but their visual appearance may differ considerably (see Figure A. 5 and Figure A. 

6; Table A. 2). 
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Figure A. 1: Samples of the DColour image dataset. Two rows for each class (top to 
bottom): red, blue, yellow, green, and orange. 
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Figure A. 2: Samples of the VisTex image database, reference images (first 9 rows) and 
scenes (last 5 rows). Highlighted images represent contextual scenes while subsequent 

images are patches of these scenes (left to right, top to bottom). 
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Table A. 1: List of categories in the VisTex image database 
Reference images Scene images 

Bark 

Brick 

Buildings 

Clouds 

Fabric 

Flowers 

Food 

Grass 

Leaves 

Metal 

Misc 

Paintings 

Sand 

Stone 

Terrain 

Tile 

Water 

Wheres Waldo

Wood 

Brick Paint 

Corridor 

Doc Cage City 

Fence Sign 

Grass Land 

Grass Land2 

Grass Plants Sky 

GroundWater City 

Mt Valley 

Prison Window 

Valley Water 
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Figure A. 3: Samples of the D25-1800 image database. 
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Figure A. 4: Samples of the D8 image database, categories: apple, car, cow, cup, dog, 
horse, pear and tomato. 
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Figure A. 5: Samples of the  D7-700 database from the Corel stock, categories: lions, 
elephants, tigers, grass, clouds, buildings and cars. 
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Figure A. 6: One sample for each category out of 101 categories in the Caltech 101 

image dataset. 
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Table A. 2: List of 101 available categories 

Accordion 

Airplanes 

Anchor 

Ant 

Background 

Google 

Barrel 

Bass 

Beaver 

Binocular 

Bonsai 

Brain 

Brontosaurus 

Buddha 

Butterfly 

Camera 

Cannon 

Car side 

Ceiling fan 

Cellphone 

Chair 

Chandelier 

Cougar body 

Cougar face 

Crab 

Crayfish 

Crocodile 

Crocodile head 

Cup 

Dalmatian 

Dollar bill 

Dolphin 

Dragonfly 

Electric Guitar 

Elephant 

Emu 

Euphonium 

Ewer 

Faces 

Faces easy 

Ferry 

Flamingo 

Flamingo head 

Garfield 

Gerenuk 

Gramophone 

Grand piano 

Hawksbill 

Headphone 

Hedgehog 

Helicopter 

Ibis 

Inline skate 

Joshua tree 

Kangaroo 

Ketch 

Lamp 

Laptop 

Leopards 

Llama 

Lobster 

Lotus 

Mandolin 

Mayfly 

Menorah 

Metronome 

Minaret 

Motorbikes 

Snoopy 

Nautilus 

Octopus 

Okapi 

Pagoda 

Panda 

Pigeon 

Pizza 

Platypus 

Pyramid 

Revolver 

Rhino 

Rooster 

Saxophone 

Schooner 

Scissors 

Scorpion 

Sea horse 

Soccer ball 

Stapler 

Starfish 

Stegosaurus 

Stop sign 

Strawberry 

Sunflower 

Tick 

Trilobite 

Umbrella 

Watch 

Water lilly 

Wheelchair 

Wild cat 

Windsor chair

Wrench 

Yin Yang 
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APPENDIX B : Mathematical prerequisites  

 In this chapter, some necessary mathematical results are introduced. They are 

sufficiently standard not to be put in the actual chapters. 

Definition B.1: A metric space is a set X  together with a function ),0[: ∞→× XXd  

which satisfies the following axioms: 

(1) Self-identity: ( , ) 0d =x y  if and only if =x y ; 

(2) Symmetry: ( , ) ( , )d d=x y y x , , X∀ ∈x y  

(3) Triangular inequality: ( , ) ( , ) ( , )d d d≤ +x z x y y z , , , X∀ ∈x y z  

Then d is a metric on X , the pair ),( dX  is called metric space and ( , )d x y is a distance 

between. 

Definition B.2: Consider a finite number of metric spaces ( , ),1i iX d i n≤ ≤ , and let set 

X  be a Cartesian product of individual sets iX , 1
n

ii X=∏ . Points in the set X  are 

denoted as 1( ,..., )n=x x x  and 1( ,..., )n=y y y  with ,i i iX∈x y , then a new metric on the 

set X is defined as: 

1
( , ) ( , )

n

i i i
i

d d
=

=∑x y x y  

Definition B.3: Let X  be a vector space over \ . A norm is a function  : X⋅ →\  

having the following properties: 

(1) 0≥x  and 0=x if and only if 0=x ; 
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(2) α α⋅ = ⋅x x  for all X∈x  and α ∈\ , 

(3) + ≤ +x y x y  for all , X∈x y . 

The pair ( , )⋅x  is called a normed vector space. 

Proposition B.4: Let X  be a normed space, any norm defines a metric d  on X as 

( , )d = −x y x y  . 

Definition B.5 (Convex set): A set X  in a vector space is convex if for any 

, X′∈x x and any [ ]0,1λ∈ , (1 ) Xλ λ ′+ − ∈x x . 

Definition B.6 (Convex Functions): A function f defined on a set X is convex for any 

, X′∈x x and any [ ]0,1λ∈  such that (1 ) Xλ λ ′+ − ∈x x  and  

( (1 ) ) ( ) (1 ) ( )f f fλ λ λ λ′ ′+ − ≤ + −x x x x  

A function is strictly convex if for ′≠x x  and (0,1)λ∈ strict inequality holds.  

Theorem B.7 (Minima on the Convex set): If a convex function :f → X\  has a 

minimum on a convex set X ⊂ X  then arguments x  for which the minimal values are 

obtained, form a convex set. If f  is strictly convex, than the set will contain only one 

element. 

Corollary B.8 (Constrained Convex Minimization): Given the set of convex 

functions 1, , , mf c c…  on convex set X , the problem  

min ( )f
x

x subject to ( ) 0, 1,...,ic i m≤ =x  

has as its solution a convex set, if a solution exists. This solution is unique if f is 

strictly convex. 

Definition B.9 (KKT conditions): For the following optimisation problem with 

inequality constraints: 

max ( )f
x

x  subject to ( )i ig c≤x  for 1,...,i m= .  

The Karush-Kuhn-Tucker conditions are ( ) 0,jL′ =x  for 1,...,j n= , 0iλ ≥ , ( )i ig c≤x  

and [ ( ) ] 0i i ig cλ − =x  for 1,...,i m= . Where 
1

( ) ( ) ( ( ) ).
m

i i i
i

L f g cλ
=

= − −∑x x x is a 

Lagrangian. 
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Definition B.10: Inner product space is a vector space X over real numbers \ if there 

exist a bilinear (linear in each argument), symmetric, positive definite scalar value 

product ,⋅ ⋅ , for vectors , , X∈x y z  and scalars ,α β ∈\  : 

(1) , , ,α β α β+ = +x y z x y y z  

(2) , ,=x y y x  

(3) , 0≥x x  

Additionally for , 0 if 0= =x x x  we have a strict inner product, dot or scalar product. 

Definition B.11 (Hilbert Space) : A Hilbert space H  is any linear space with an inner 

product being separable and complete with corresponding norm. 

Completeness is expressed as convergence of any Cauchy sequence of elements 

1 2{ } ( , , , )i i n∈ =x x x x` … in a normed space, where Cauchy sequence is the one 

satisfying the following property: 

sup 0, for i j
j i

n
>

− → →∞x x . 

Separable space H  assumes a finite set of elements 1 2, , , Nx x x…  for 0ε > , so that for 

all H∈x  min ii
ε− <x x . 

Example B.12: Let 2 ( )L X  be a Hilbert space of square integrable functions on 

NX ⊂ \ , with completeness defined as { }2
2( ) : ( )

X
L X f f x dx= < ∞∫ . For ,f g X∈  

the inner product is defined as , ( ) ( )
X

f g f x g x dx= ∫ . 

Definition B.13 (σ -Algebra): A σ -algebra over a non-empty set X  is a non-empty 

collection of subsetsC , closed under complements and countable infinite unions: 

(1) SetX and an empty-set are elements of any σ -algebra C  over X . 

(2) If set C∈C  so is C , compliment of C . 

(3) A union (intersection) of countable many sets in C is also inC . 
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Definition B.14: A measureµ , is a function from σ -algebra C  on X  which assigns a 

real number to subsets of X , [ ]: 0,µ → ∞C , such that the two following properties 

hold: 

(1) Measure of an empty set is zero, ( ) 0µ ∅ = . 

(2) Measure of any finite or countable infinite union of all mutually disjoint 

sets 1 2, ,C C ∈… C  is equal to the sum of the measures on these sets, σ -

additivity: 
11

( ) ( )i i
ii

C Cµ µ
∞ ∞

==
=∑∪  

Definition B.15: A function f  is measurable if the inverse function (pre-image) on any 

closed real number interval is in σ -algebra C  on X  . 

Definition B.16: The integral of a measurable function f  on a set C  is denoted as  

( ) ( )f x d xµ∫X . 
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APPENDIX C : Algorithm for Sequential 

Minimal Optimization 

SVM optimality conditions 

 As mentioned in Chapter 3, the goal of a SVM is to maximize the objective function 

from (3.24): 

2

, 1

1min
2

m

ib i
C ξ
=

+ ∑
w

w  

subject to (( ( ) ) 1 , 0 1,..,i i i iy b i mξ ξ⋅Φ + ≥ − ≥ =w x . 

Sequential Minimal optimisation is a method proposed by Platt (1999a). In each 

iteration a quadratic problem of size two is solved, since this can be done analytically 

there is no need for a quadratic optimizer. However the problem is how to choose a 

good pair of variable to optimize in each iteration. The algorithm explained in detail in 

this appendix is an improvement from Keerthi et al. (2001) used for solving the SVM 

optimisation problem, and implemented for the RF approach in this thesis. 

As mentioned the Lagrangian of this problem is: 

2

1 1 1

1( , , , , ( (( ( )) ) 1 )
2

m m m

i i i i i i i i
i i i

L b C y bξ ξ α ξ β ξ
= = =

) = + − ⋅ ⋅Φ + − − −∑ ∑ ∑w α β w w x , 

Based on the KKT conditions (Appendix B, Definition B.9): 

⇒=
∂
∂ 0
w
L

1
( )

m

i i i
i

yα
=

= Φ∑w x , ⇒=
∂
∂ 0

b
L

1
0

m

i i
i

yα
=

=∑ , 
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 0
i

L
ξ
∂ = ⇒
∂

0i iC α β− − = , mi ,...1=  

0iα ≥ , 
1

( (( ( ) ) 1 )
m

i i i i
i

y bα ξ
=

⋅ ⋅Φ + − −∑ w x  and 0iβ ≥ , 0i iβ ξ =  

Hence the dual problem is now: 

1 1 1 1

1 1max max ( , )
2 2

m m m m
T

i i i j i j i j
i i i j

y y Kα α α α
= = = =

− = −∑ ∑ ∑∑
α α

w w x x              (C.1) 

0 , 1,...,i C i mα≤ ≤ =                                                 (C.2)  

1
0

m

i i
i

yα
=

=∑                                                               (C.3)  

The numerical approach is to solve the dual instead of the primal problem since it is a 

finite dimensional optimisation problem. In order to obtain proper stopping criteria for 

the dual optimisation problem an optimisation of the dual was proposed by Keerthi et al. 

(2001). The Lagrangian for the dual problem is: 

1 1 1 1

1 ( )
2

m m m m
T

i i i i i i i
i i i i

L C yα δ α µ α ρ α
= = = =

= − − − − −∑ ∑ ∑ ∑w w� , 

1
( ) ( , )

m

i i i j j j i i
j

F y y K yα
=

= ⋅Φ − = −∑w x x x                                (C.4) 

The KKT conditions are now:  

( ) 0i i i i
i

dL F y
d

ρ δ µ
α
= − − + =

�
, 0iδ ≥ , 0i iδ α = , 0iµ ≥ , ( ) 0i iCµ α− = , 1,...,i m= . 

Three cases can be distinguished: 

(1) 0iα =  and 0iδ > , 0iµ = ⇒ ( ) 0i iy F ρ− ≥  

(2) 0 i Cα< < and 0iδ > , 0iµ = ⇒ ( ) 0i iy F ρ− =  

(3) i Cα =  and 0iδ =  , 0iµ ≥ ⇒ ( ) 0i iy F ρ− ≤  

A number of index sets can be defined for α : 0 { : 0 }iI i Cα= < < , 

1 { : 1, 0}i iI i y α= = = , 2 { : 1, }i iI i y Cα= = − = , 3 { : 1, }i iI i y Cα= = =  and  

4 { : 1, 0}i iI i y α= = − = . 

In case KKT conditions are satisfied the three conditions above can now be re- written 

as: 
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0 1 2, ii I I I F ρ∀ ∈ ∪ ∪ ≥  

0 3 4, ii I I I F ρ∀ ∈ ∪ ∪ ≤  

Hence an upper and lower limit on value iF  can be defined through: 

0 1 2

0 3 4

min{ : }

max{ : }
up i

low i

b F i I I I

b F i I I I

= ∈ ∪ ∪

= ∈ ∪ ∪
 

The KKT conditions are now simply up lowb b≥ , and the optimality multiplication ρ  

equals to bias b , and can be placed halfway between lowb  and upb . Violation of the 

conditions is defined as: 

0 1 2i I I I∈ ∪ ∪ , 0 3 4j I I I∈ ∪ ∪  and i jF F<  

0 3 4i I I I∈ ∪ ∪ , 0 1 2j I I I∈ ∪ ∪  and i jF F>  

Optimizing a quadratic problem of size two 

 It is assumed that the two coefficients that are result of the current optimisation step are 

denoted as 1 2,new newα α  their previous values are 1 2,old oldα α  with the rest of the 

coefficients 3, , mα α…  fixed. 

The following equation 
1

0
m

i i
i

yα
=

=∑ implies that : 

1 1 2 2 1 1 2 2 .new new old oldy y y y constα α α α+ = + =                                    (C.5) 

Leading to line optimisation (Platt, 1999a): 

1 2
1 2

1 2

1,
1,

y y
s y y

y y
=⎧

= ⋅ = ⎨− ≠⎩
 , 1 2 1 2 .new new old olds s constα α α α γ+ = + = =                   (C.6) 

Since the rest of the coefficients are fixed, in this current iteration they are constant 

hence (C.1) is now: 

1 2

2 2
1 1 1 1 1 2 2 2 2 2 1 2 1 2 1 2

1 1 1 2 2 2
3

( ) .
1 [ ( ) ( )( ) ( ) ( )( ) 2 ( ) ( )
2

2 ( ) ( ( ) ( ) ) .]

new new

new new new new

m
new new

i i i
i

L const

y y y y y y

y y y const

α α

α α α α

α α α
=

= + +

− Φ Φ + Φ Φ + Φ Φ

⎛ ⎞
+ Φ ⋅ Φ + Φ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑

α

x x x x x x

x x x
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Appropriate kernels are denoted as 11 1 1( ) ( )K = Φ Φx x , 22 2 2( ) ( )K = Φ Φx x  and 

12 1 2( ) ( )K = Φ Φx x .  Based on 
1

( )
m

i i i
i

yα
=

= Φ∑w x  part of the above expression can be 

formulated in the following way: 

1 1 1 2 2 2
3 1

1 1 1 2 2 2

1 1 1 2 2 2

( ( )) ( ) ( ( ) ( ) ( )) ( )

( ( ) ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m m

j i i i j i i i j
i i

old old old old old
j j j

old old old old
j j j

v y y y y

b b y y

u b y y

α α α α

α α

α α

= =
≡ Φ Φ = Φ − Φ − Φ Φ

= Φ + − − Φ Φ − Φ Φ

= − − Φ Φ − Φ Φ

∑ ∑x x x x x x

x w x x x x

x x x x

 

The predicted output for input pattern jx  with respect to the values from the previous 
iteration can be expressed as: 

( )old old old
j ju b= Φ +x w                                                 (C.7) 

Incorporating this relation into the expression for Lagrange leads to: 

2 2
1 2 11 1 22 2 12 1 2

1 1 1 2 2 2

1( ) [ ( ) ( ) 2
2

2 ) .

new new new new new new

new new

L K K sK

y v y v const

α α α α α α

α α

= + − + +

+ + +

α
 

Now the expression in (C.6)  can be used to further express the Lagrange as a function 

of only 2
newα  coefficient: 

2 2
2 2 11 2 22 2 12 2 2

1 1 2 2 2 2

2
12 11 22 2

11 12 2 1 1 2 2

1( ) [ ( ) ( ) 2 ( )
2

2 ( ) ] .

1( ) (2 ) ( )
2

(1 ) .

new new new new new new

new new

new

new

L s K s K sK s

y v s y v const

L K K K

s sK sK y v y v const

γ α α γ α α γ α α

γ α α

α

γ γ α

= − + − − + + −

+ − + +

= − − ⋅

+ − + − + + +

α

α

#  

Multiplier of 2
newα is now: 
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11 12 2 1 2

11 1 2 12 1 2

2 1 1 1 11 2 2 12 2 2 1 1 12 2 2 22

2
2 1 2 11 12 22 2 2 1 2

2

1

1 ( ) ( )

( ) ( )

( 2 ) ( )

((

old old old old

old old old old old old old old

old old old

s sK sK y v y v

s sK s sK s

y u b y K y K y u b y K y K

y y y K K K y u u

y

γ γ

α α α α

α α α α

α
η

− + − + −

= − + + − +

+ − − − − − − −

= − + − + + −
−

=

#

���	��


1 1 2 2 2) ( ))old old old old oldu y b u y b ηα− + − − + −

 

Predicted output old
ju  by the SVM for pattern jx  based on values in the previous 

iteration is given with  (C.7) , iy  represents the real label and the prediction error is: 

( ) , 1, 2old old old old old
i i j i iu y b y F b i− = Φ + − = + =x w .                               (C.8) 

Hence the objective function can be expressed in the following form:  

2
2 2 1 2 2 2

1( ) ( ) ( ( ) ) .
2

new old old old newL y F F constη α ηα α= + − − +α  

The first and second derivatives are: 

 
2 2 1 2 2

2

2 2 1
2 2

2

( ) ( ( ) ),

( )( ) 0

new old old old
new

old old
new old

new

dL y F F
d

y F FdL
d

ηα ηα
α

α α
ηα

= + − −

−= ⇒ = −

α

α
                           (C.9) 

2

12 11 222
2

( ) , 2 0
( )new
d L K K K

d
η η

α
= = − − ≤α                                   (C.10) 

In case 0η <  the equation for 2
newα  gives the unconstrained maximum point and this 

point must be checked if it belongs to the feasibility range.  
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1 2 , Cα α γ γ+ = > 1 2 , Cα α γ γ+ = <

1 2 , 0α α γ γ− = > 1 2 , 0α α γ γ− = <

1α 1α

1α 1α

2α 2α

2α 2α

( , )C Cγ −

( , )C Cγ −

(0, )γ

( , 0)γ

( , 0)γ

( , )C C γ−
(0, )γ−

( , )C Cγ+

 

Figure C. 1: The two Lagrangian multiplier must lie within a box 0 i Cα≤ ≤ , and at the 
same time fulfil the linear equality constraint (C.3) and lie on the diagonal line (Platt, 

1999a). 

 

Based on  (C.6)  and Figure C. 1  the range for 2
newα  is determined as: 

         1s = , 1 2
new newα α γ+ = ⇒  2 2

2 2

, max min

, min 0 max

new new

new new

C C C

C

γ α α γ

γ α α γ

⎧ > = ∧ = −⎪
⎨

< = ∧ =⎪⎩
 

 1s = − , 1 2
new newα α γ− = ⇒  2 2

2 2

0, min 0 max

0, min max

new new

new new

C

C

γ α α γ

γ α γ α

⎧ > = ∧ = −⎪
⎨
< = − ∧ =⎪⎩

 

The optimisation step 

Given 1 2,old oldα α  and appropriate 1 2,y y , 11K , 12K , 22K , 2 1
old oldF F− , the two 

Lagrangian coefficients are optimized based on values of η  from (C.10): 

▪ If 0η < ,  2 2 1
2 2 2

( )old old
old new y F Fα α α

η
−− = ∆ = , the solution 2

newα is then 

clipped based on boundaries in Figure C. 1, and values for 1
newα  obtained as: 

1 1 1 2
old new sα α α α− = ∆ = − ∆ . 
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▪ If 0η =  the objective function needs to be evaluated at the two endpoints for 2α  

that are ,L H , and 2
newα  set to be the one with larger objective function value. 

The final form of the objective function is denoted as follows: 

2
2 2 1 2 2 2

1( ) ( ) ( ( ) ) .
2

new old old old newL y F F constη α ηα α= + − − +α  

Updating after the optimisation step 

After value for 1 2,new newα α are obtained the improvement by Keerthi et al. (2001) avoids 

using the threshold b  and compares two iF ’s given with (C.4) while automatically 

selecting the second iα  for joint optimisation. The following values for iF  are updated 

and cashed for Lagrangian multipliers falling into the set 0I : 

1 1 1 1 11 2 2 12
new oldF F y K y Kα α= + ∆ + ∆  

2 2 1 1 12 2 2 22
new oldF F y K y Kα α= + ∆ + ∆ . 

Choosing examples violating KKT conditions 

The first iα  is selected sequentially from all non boundary examples from index set 0I , 

0 i Cα< < . If the first iα  violates KKT conditions it is compared with jα  values for 

j lowF b= or j upF b= . The selected jα  is the second needed Lagrangian coefficient. The 

second version of this approach assumes choosing the worst KKT condition violating 

pair, as Lagrangian coefficients, that is coefficients with one or both iF  set to lowb  or 

upb . 
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