
Appendix C

An Analysis of Quattron

While 3 primaries based on the CIE colour model have almost universally adopted for
active colour reproduction, there are 2 examples where manufacturers of display technology
have claimed to have developed colour reproduction based on 4 primaries and 1 example
of a manufacturer that has claimed 6 primaries. Both Panasonic Quatrecolor and Sharp
Quattron added yellow as a primary, and advertised the merits of the respective technology
on the basis of improved colour reproduction. Mitsubishi’s 6-color processing added yellow,
cyan and magenta . Both Mitsubishi’s 6-colour approach and Panasonic’s Quatrecolor are
currently obsolete.

Quattron has been criticised for being “just another shameful marketing gimmick” Soneira
[2010], on the basis that the addition of a 4’th yellow pixel will bring colours the display
reproduces outside the bounds of Rec. 709 subset of the CIE colour space while at the same
time failing to significantly increase the available colour space.

Note that in our figure, the outer white curve represents the limits of human
vision. While the Rec.709 standard is much smaller, it’s important to note
that the colors between the black triangle and white curve aren’t common in
nature. Yes, a display can only reproduce the colors that lie inside of the polygon
formed by its primary colors, but because yellow falls between the red and green
primaries, Sharp’s yellow primary would need to lie somewhere outside of the
red and green leg of the color triangle. But there isn’t much room between
the Rec.709 triangle and the human vision curve, is there? For this reason, it’s
difficult to see why a yellow primary sub-pixel is needed unless Sharp isn’t able
to put its red and green primaries where they belong. Soneira [2010]

Between 635nm and 535nm, the CIE colour space is approximately linear and therefore
predicts that monochromatic colour stimuli within these bounds can be matched with 2
monochromatic primaries. Monochromatic yellow is found approximately at the midpoint
of this line. Under the CIE colour model all colours within the chromaticity space enclosed
by the primaries may be accurately reproduced, and as yellow is found on the line be-
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tween green and red it may be accurately reproduced if the red and green primaries are
monochromatic (which is something recommended by Rec. 2020). The introducing of a
yellow primary would therefore serve little or no function, depending on how closely the red
and green primaries approach being monochromatic. It should be noted, however, from
the colour matching chromaticity diagram that if the space enclosed by 3 primaries were to
be maximised the green primary would be placed at approximately maximal y (see Figure
C.2) – which is below 520nm. The fact that this cannot be done in practice cannot be
derived from the chromaticity diagram. As the spectral distance between the green and
red primaries are increased the constituent stimuli will be perceived as increasingly less
saturated (increasingly white). Under opponency the red and green primaries are 2 parts
of an opponent pair, and therefore green + red = white. While for humans this holds for
the opponent pair blue-yellow, due to the peculiarities of the human visual system it holds
only partially for red-green. Nevertheless, this contradicts the underlying assumption of the
CIE colour model of linearity between arbitrary primaries. The CIE colour model predicts
that colour for any linear segment through the CIE colour space may be reproduced by 2
primaries at the boundaries of the segment. This, however, holds imperfectly within the
red-green region. The CIE colour matching chromaticity space is known to be imperfectly
linear, but is nevertheless assumed to be so due to the benefits derived from linearity. The
non-linearity between the red-green primaries is implicitly acknowledged by the choice of
(under the CIE colour model) non-optimal red and green primaries for practical colour re-
production. To reproduce yellow the red and green primaries must be green-yellow and
orange, and this reduces the colour space enclosed by the primaries (Rec. 709 being an
extreme example, with the gamut reduced to less than half of the colour space mapped by
colour matching – see Figure C.2). Proponents of the CIE colour model suggest that the
colours lost are ‘not very important’:

...but be aware that for most applications, gamut size doesn’t matter very much.
The further out you go in color space, the less frequent the colors appear in
nature, so the human eye doesn’t notice that they’re not quite right except
in rare circumstances (like when viewing a full-screen rendering of a very red
tulip). Soneira [2010]

A study of natural colour reproduction contradicts this assumption, and tulips are a good
example to illustrate natural colour reproduction. Tulips (genus Tulipa) displays colour
prominently to advertise its reproductive needs and have been cultivated by humans to
serve a decorative function in respect of their display of colour. A wide variety of tulip
exists, capable of reproducing a broad range of colours. Nevertheless, there is no blue
tulip. This is because the underlying colour model of the tulip (like that of many flowering
plants) expresses absorption of blue (the range of short wavelengths). Tulips are therefore
naturally yellow rather than red, and they compete in attracting pollinators by the purity
and luminance of the yellow they are able to reflect from the natural ambient light. This
approach to colour reproduction is common in the natural environment and therefore it
is very important that colour reproduction is able to match natural yellow. For reflective
colour reproduction this is achieved by absorbing blue and for emissive colour reproduction
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this is achieved by combining green, yellow and red light. Under the opponency paradigm
green and red subtract (being 2 parts of an opponent pair) leaving only the luminance.
The purpose of adding green and red to yellow is therefore to increase the amount of
light reflected and thereby increasing perceptual luminance. If colour reproduction is to
be achieved without a yellow primary then the green and red primaries may be broadened
to fill the spectral gap of the yellow primary. In so doing the red and green primaries
become green-yellow and orange (that is, they become impure). Colour reproduction with
3 primaries therefore faces an inherent yellow/red-green contradiction. A contradiction that
practical colour reproduction balances by placing the red and green primaries sufficiently
close that when combined will produce a perceptually acceptable yellow while at the same
time when independent will be perceived as red and green. This will always be an imperfect
balance. The role of a yellow primary is therefore to break this link between the red-green
primaries and yellow ; allowing perceptually pure primaries at approximately 520nm for green
and 630nm for red, while at the same time allowing a pure high luminance natural yellow
with green+yellow+ red. If the colour information is coded using only 3 primaries, a yellow
primary may be driven by the convention R = G. This allows a perceptually accurate
and precise transition from yellow to red in the same way that natural colour reproduction
transitions from yellow to red.

The addition of a true yellow pixel to a 3 primary approach to colour reproduction is to
make possible a perceptually pure (fully saturated) green and red primaries while at the
same time allowing a natural fully saturated pure yellow. If the red and green primaries
have been shifted significantly toward yellow (as with Rec. 709, where the green primary
is an unsaturated green-yellow and the red primary is orange) there is little to gain by
adding a 4’th yellow primary, other than to allow a more fully saturated yellow. However,
colour spaces such as Rec. 2020, DCI-P3, and Adobe RGB extend the distance of the
red and green primaries from yellow and therefore have greater difficulty reproducing a
fully saturated yellow (see C.3). This perceptual effect is not reflected in the chromaticity
diagram, which predicts linearity between the primaries irrespective of the distance the
red and green primaries have from yellow. It is an irregularity caused by colour matching
operating under the assumption that colour is monochromatic, which holds for all the
primaries except yellow (a natural yellow will for at least half of human subjects not match
a monochromatic yellow). The addition of a yellow primary therefore allows a colour
space (defined under the CIE colour model) to correct for perceptual error in respect of
yellow inherent to the CIE colour model, thereby restoring the predicted perceptual linearity
between the red and green primaries.

On this basis, a display technology such as Quattron that employs a yellow 4’th primary
would be expected to use the 4’th primary to improve the red and green primaries. Quattron
does have 4 colour sub-pixels in the underlying hardware, however, a graph of the spectral
response (figure C.1) shows a clear lack of a 4’th primary. The green primary is approxi-
mately 100nm wide (twice as broad as the blue primary) with a dominant wavelength at
approximately 540nm and the red primary extends from 580-700nm – most humans have
very little perceptual response above 660nm and therefore 580-660nm is perceptually a
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(red-orange). The red and green primaries therefore overlap, and it may be observed that
when a yellow stimuli is displayed that there is a dip in the spectral power at the point
where the green and red primaries intersect – 575-585nm. The human red sensor (sensitive
to long wavelengths) has a peak sensitivity between 564-580nm, and the green (medium)
sensor has a peak response between 534-545nm. The Quattron primaries therefore target
the middle sensor but fail to target the long sensor, with a spectral power minima at the
sensor’s peak sensitivity. This minima point at the intersection between the red and green
primaries also suggests that a yellow primary is produced by simply combining the red and
green primaries. If yellow is implemented as red + yellow + green then a lack of an indepen-
dent yellow primary will reduce a 4’th ‘yellow’ sub-pixel to equivalency with red and green
sub-pixels whose surface area is increased to include that of the ‘yellow’ sub-pixel. On this
basis it may be concluded that Quattron is a “gimmick”. It has a yellow sub-pixel but no
yellow light to pass through it. Its only function can therefore be to allow more green and
red light to pass through, which is equivalent to passing the same light through green and
red pixels that are 50% larger. It therefore serves no useful function, as suggested by the
critics.
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Figure C.1: Spectral response of a common Quattron display. The white response was com-
pared with each of the 4 primaries, given by the respective colored line. All primaries were
set to their respective 8-bit RGB maximum, with the exception of equalized yellow where
G was reduced by 20%. The model tested is LC-40LE811E, which uses LED backlighting.
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Figure C.2: Colour gammut of Rec. 709, Rec. 2020, Adobe RGB and DCI-P3 (a digital
cinema colour space) mapped onto the CIE 1931 chromaticity diagram. Note that the
colour image is an convention used for didactic reasons and not linked the colour model
itself.
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Figure C.3: Maximal gammut using 3 primaries. The lower yellow line indicates perceptual
chromaticity, and upper yellow line indicates a correction by the use of a 4’th primary. With
increasing distance between the red and green primaries the yellow ‘sags’ perceptually.
The large circle indicates a region of indecision where a stimuli will either be perceived as
yellow with either some degree of green or some degree of red (and with a match with pure
yellow being impossible). Note that the colour image is an convention used for didactic
reasons and not linked the colour model itself.
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